Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Linear stability of supersonic boundary layer with synthetic cold/hot jet control

Liu Qiang Luo Zhen-Bing Deng Xiong Yang Sheng-Ke Jiang Hao

Citation:

Linear stability of supersonic boundary layer with synthetic cold/hot jet control

Liu Qiang, Luo Zhen-Bing, Deng Xiong, Yang Sheng-Ke, Jiang Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • To investigate the stability and transition control mechanism of supersonic boundary layer, a coupled method of velocity/temperature control based on synthetic cold/hot jet is proposed. Based on the prior dual-synthetic jet actuator, a high performance synthetic cold/hot jet is achieved by adding a cooling/heating module. By placing the actuator under the flat-plate, periodic blow-suction is produced and low momentum jets are injected into the boundary layer to control the transition. Numerical simulations are conducted to study the propagation and evolvement of the unstable waves in the supersonic flat-plate boundary layer with Ma=4.5. Influences of wall blow-suction, synthetic jet temperature, perturbation frequency, and perturbation amplitude on control effect of the unstable wave are mainly studied. The flow field and control effect are analyzed using the temporal mode of linear stability theory. The results show that without jet control, the first and second mode perturbation wave coexist simultaneously with the second mode dominant in the two-dimensional wave. In the effect of the wall blow-suction, the second mode appears to be more unstable while the first mode is suppressed. Under the control of the coupled speed-temperature, the jet temperature has significant influences on the area of the unstable region and the growth rate of the perturbation mode. When the jet temperature is different from the inlet fluid temperature, the fluctuation of temperature accelerates the transition of laminar flow to turbulent flow, and the velocity profile becomes more full, which leads to a more stable flow field. The control effect of high frequency blow-suction disturbance on flow field are better than that of low frequency. When the control frequency is higher than 400 Hz, the imaginary part of the eigenvalue ω _i of the second mode disturbance wave decreases, and the disturbance component accelerates the correction between velocity profile and temperature profile of supersonic boundary layer, thus making a more stable second mode. When the disturbance amplitude decreases to 1% of the main flow speed, only the second mode is detected of low time growth rate, which results in a better control effect. However, as the disturbance amplitude further decreases, the first mode reemerges, and its wave number overlaps with that of the second mode at first, and then, separates from each other. The research results provide a new idea for supersonic boundary layer transition control from laminar flow to turbulent flow.
      Corresponding author: Luo Zhen-Bing, luozhenbing@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11602299, 11372349, 11502295, 11572349).
    [1]

    Prandtl L 1904 Proceedings of the third International Mathematics Congress Heidelberg, August 3-6 1904 p484

    [2]

    Zhou H, Su C H, Zhang Y M 2015 Transition Mechanism and Prediction of Supersonic/Hypersonic Boundary Layer (Beijng:Science Presss) p4 (in Chinese)[周恒, 苏彩虹, 张永明 2015 超声速/高超声速边界层的转捩机理及预测 (北京:科学出版社) 第4页]

    [3]

    Kim K, Sung H J 2003 AIAA J. 41 484

    [4]

    Kim K, Sung H J 2003 AIAA J. 557 423

    [5]

    Hao G L, Jiang N 2015 J. Mech. Stren. 35 730 (in Chinese)[郝刚立, 姜楠 2015 机械强度 35 730]

    [6]

    Hao G L 2008 M. S. Dissertion (Tianjin:Tianjin University) (in Chinese)[郝刚立 2008 硕士学位论文 (天津:天津大学)]

    [7]

    Lysenko V I, Maslov A A 1984 J. Fluid Mech. 147 39

    [8]

    Stetson K F, Thompson E R, Donaldson J C, Siler L G 1984 AIAA 1984-0006

    [9]

    Stetson K F, Thompson E R, Donaldson J C, Siler L G 1985 AIAA 1985-0492

    [10]

    Stetson K F, Thompson E R, Donaldson J C, Siler L G 1989 AIAA 1989-1895

    [11]

    Zhao G F 2001 Appl. Mech. Rev. 33 519 (in Chinese)[赵耕夫 2001 力学学报 33 519]

    [12]

    Wang S Z, Lei J M, Li C X 2014 Collection in 16th Computational Fluid Dynamics Symposium Xiamen, China February 26-, 2014 p1 (in Chinese)[王锁柱, 雷娟棉, 李椿萱 2014 第十六届全国计算流体力学会议 中国厦门, 2014年 2月26日–2月28日, p1]

    [13]

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 64 224702 (in Chinese)[陆昌根, 沈露予 2015 物理学报 64 224702]

    [14]

    Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese)[陆昌根, 沈露予 2016 物理学报 65 194701]

    [15]

    Shen L Y, Lu C G 2017 Acta Phys. Sin. 66 014703 (in Chinese)[沈露予, 陆昌根 2017 物理学报 66 014703]

    [16]

    Luo Z B, Xia Z X, Liu B 2006 AIAA J. 44 2418

    [17]

    Luo Z B, Xia Z X, Deng X, Wang L, Li Y J, Ma Y, Wang J W, Peng L, Jiang H, Yang S K, Yang R 2017 Acta Aerodyn. Sin. 35 252 (in Chinese)[罗振兵, 夏智勋, 邓雄, 王林, 李玉杰, 马瑶, 王俊伟, 彭磊, 蒋浩, 杨升科, 杨瑞 2017 空气动力学学报 35 252]

    [18]

    Huang Z F, Cao W, Zhou H 2005 Sci. China:Ser. G 48 614

    [19]

    Andrea S 2015 Ph. D. Dissertation (Southampton:University of Southampton)

    [20]

    Mack L M 1975 AIAA J. 13 278

  • [1]

    Prandtl L 1904 Proceedings of the third International Mathematics Congress Heidelberg, August 3-6 1904 p484

    [2]

    Zhou H, Su C H, Zhang Y M 2015 Transition Mechanism and Prediction of Supersonic/Hypersonic Boundary Layer (Beijng:Science Presss) p4 (in Chinese)[周恒, 苏彩虹, 张永明 2015 超声速/高超声速边界层的转捩机理及预测 (北京:科学出版社) 第4页]

    [3]

    Kim K, Sung H J 2003 AIAA J. 41 484

    [4]

    Kim K, Sung H J 2003 AIAA J. 557 423

    [5]

    Hao G L, Jiang N 2015 J. Mech. Stren. 35 730 (in Chinese)[郝刚立, 姜楠 2015 机械强度 35 730]

    [6]

    Hao G L 2008 M. S. Dissertion (Tianjin:Tianjin University) (in Chinese)[郝刚立 2008 硕士学位论文 (天津:天津大学)]

    [7]

    Lysenko V I, Maslov A A 1984 J. Fluid Mech. 147 39

    [8]

    Stetson K F, Thompson E R, Donaldson J C, Siler L G 1984 AIAA 1984-0006

    [9]

    Stetson K F, Thompson E R, Donaldson J C, Siler L G 1985 AIAA 1985-0492

    [10]

    Stetson K F, Thompson E R, Donaldson J C, Siler L G 1989 AIAA 1989-1895

    [11]

    Zhao G F 2001 Appl. Mech. Rev. 33 519 (in Chinese)[赵耕夫 2001 力学学报 33 519]

    [12]

    Wang S Z, Lei J M, Li C X 2014 Collection in 16th Computational Fluid Dynamics Symposium Xiamen, China February 26-, 2014 p1 (in Chinese)[王锁柱, 雷娟棉, 李椿萱 2014 第十六届全国计算流体力学会议 中国厦门, 2014年 2月26日–2月28日, p1]

    [13]

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 64 224702 (in Chinese)[陆昌根, 沈露予 2015 物理学报 64 224702]

    [14]

    Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese)[陆昌根, 沈露予 2016 物理学报 65 194701]

    [15]

    Shen L Y, Lu C G 2017 Acta Phys. Sin. 66 014703 (in Chinese)[沈露予, 陆昌根 2017 物理学报 66 014703]

    [16]

    Luo Z B, Xia Z X, Liu B 2006 AIAA J. 44 2418

    [17]

    Luo Z B, Xia Z X, Deng X, Wang L, Li Y J, Ma Y, Wang J W, Peng L, Jiang H, Yang S K, Yang R 2017 Acta Aerodyn. Sin. 35 252 (in Chinese)[罗振兵, 夏智勋, 邓雄, 王林, 李玉杰, 马瑶, 王俊伟, 彭磊, 蒋浩, 杨升科, 杨瑞 2017 空气动力学学报 35 252]

    [18]

    Huang Z F, Cao W, Zhou H 2005 Sci. China:Ser. G 48 614

    [19]

    Andrea S 2015 Ph. D. Dissertation (Southampton:University of Southampton)

    [20]

    Mack L M 1975 AIAA J. 13 278

  • [1] He Xiao-Qiu, Xiong Yong-Liang, Peng Ze-Rui, Xu Shun. Boundary layers and energy dissipation rates on a half soap bubble heated at the equator. Acta Physica Sinica, 2022, 71(20): 204701. doi: 10.7498/aps.71.20220693
    [2] Huang Ya-Dong, Wang Zhi-He, Zhou Ben-Mou. Transition control of cylinder wake via Lorentz force. Acta Physica Sinica, 2022, 71(22): 224702. doi: 10.7498/aps.71.20221357
    [3] Liu Yong, Tu Guo-Hua, Xiang Xing-Hao, Li Xiao-Hu, Guo Qi-Long, Wan Bing-Bing. Parametrization of suppressing hypersonic second-mode waves by transverse rectangular microgrooves. Acta Physica Sinica, 2022, 71(19): 194701. doi: 10.7498/aps.71.20220851
    [4] Tang Bing-Liang, Guo Shan-Guang, Song Guo-Zheng, Luo Yan-Hao. Experimental study on supersonic plate boundary layer transition under pulsed arc plasma excitation control. Acta Physica Sinica, 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [5] Lu Chang-Gen, Shen Lu-Yu, Zhu Xiao-Qing. Numerical study of effect of pressure gradient on boundary-layer receptivity under localized wall blowing/suction. Acta Physica Sinica, 2019, 68(22): 224701. doi: 10.7498/aps.68.20190684
    [6] Wang Hong-Yu, Li Jun, Jin Di, Dai Hui, Gan Tian, Wu Yun. Response of the shock wave/boundary layer interaction to the plasma synthetic jet. Acta Physica Sinica, 2017, 66(8): 084705. doi: 10.7498/aps.66.084705
    [7] Ai Xu-Peng, Ni Bao-Yu. Influence of viscosity and surface tension of fluid on the motion of bubbles. Acta Physica Sinica, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [8] Lu Chang-Gen, Shen Lu-Yu. Numerical study of leading-edge receptivity on the infinite-thin flat-plat boundary layer. Acta Physica Sinica, 2016, 65(19): 194701. doi: 10.7498/aps.65.194701
    [9] Li Fang, Zhao Gang, Liu Wei-Xin, Zhang Shu, Bi Hong-Shi. Numerical simulation and experimental study on drag reduction performance of bionic jet hole shape. Acta Physica Sinica, 2015, 64(3): 034703. doi: 10.7498/aps.64.034703
    [10] Gu Yun-Qing, Mou Jie-Gang, Dai Dong-Shun, Zheng Shui-Hua, Jiang Lan-Fang, Wu Deng-Hao, Ren Yun, Liu Fu-Qing. Characteristics on drag reduction of bionic jet surface based on earthworm's back orifice jet. Acta Physica Sinica, 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [11] Chen Yao-Hui, Dong Xiang-Rui, Chen Zhi-Hua, Zhang Hui, Li Bao-Ming, Fan Bao-Chun. Control of flow around hydrofoil using the Lorentz force. Acta Physica Sinica, 2014, 63(3): 034701. doi: 10.7498/aps.63.034701
    [12] Liu Mei, Wang Song-Ling, Wu Zheng-Ren. Stability of heated liquid film on an uneven substrate. Acta Physica Sinica, 2014, 63(15): 154702. doi: 10.7498/aps.63.154702
    [13] Tang Deng-Bin, Liu Chao-Qun, Chen Lin. New properties of streamwise streaks in transitional boundary layers. Acta Physica Sinica, 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [14] Mo Jia-Qi, Liu Shu-De, Tang Rong-Rong. Shock position for a class of Robin problems of singularly perturbed nonlinear equation. Acta Physica Sinica, 2010, 59(7): 4403-4408. doi: 10.7498/aps.59.4403
    [15] Li Gang, Li Yi-Ming, Xu Yan-Ji, Zhang Yi, Li Han-Ming, Nie Chao-Qun, Zhu Jun-Qiang. Experimental study of near wall region flow control by dielectric barrier discharge plasma. Acta Physica Sinica, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [16] Zhang Gai-Xia, Zhao Yue-Feng, Zhang Yin-Chao, Zhao Pei-Tao. A lidar system for monitoring planetary boundary layer aerosol in daytime. Acta Physica Sinica, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [17] Li Rui-Qu, Li Cun-Biao. . Acta Physica Sinica, 2002, 51(8): 1743-1749. doi: 10.7498/aps.51.1743
    [18] Gong An-Long, Li Rui-Qu, Li Cun-Bao. . Acta Physica Sinica, 2002, 51(5): 1068-1074. doi: 10.7498/aps.51.1068
    [19] LI CUN-BIAO. ON THE FORMATION OF THE STREAMWISE VORTEX IN A TRANSITIONAL BOUNDARY LAYER. Acta Physica Sinica, 2001, 50(1): 182-184. doi: 10.7498/aps.50.182
    [20] LIN HUNG-SUN. ON THE GAS FLOW AND HEAT TRANSFER IN LAMINAR BOUNDARY LAYER FLOW. Acta Physica Sinica, 1954, 10(1): 71-88. doi: 10.7498/aps.10.71
Metrics
  • Abstract views:  4506
  • PDF Downloads:  164
  • Cited By: 0
Publishing process
  • Received Date:  07 June 2017
  • Accepted Date:  27 June 2017
  • Published Online:  05 December 2017

/

返回文章
返回