Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stimulated lasing and self-excited stimulated Raman scattering of Nd3+ doped silica microsphere pumped by 808 nm laser

Huang Yan-Tang Peng Long-Xiang Zhuang Shi-Jian Li Qiang-Long Liao Ting-Di Xu Can-Hua Duan Ya-Fan

Citation:

Stimulated lasing and self-excited stimulated Raman scattering of Nd3+ doped silica microsphere pumped by 808 nm laser

Huang Yan-Tang, Peng Long-Xiang, Zhuang Shi-Jian, Li Qiang-Long, Liao Ting-Di, Xu Can-Hua, Duan Ya-Fan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Self-stimulated Raman lasers have attracted more and more interest, because they have no need of additional Raman device, and they are compact in structure and also economical in cost. Self-stimulated Raman lasers are always emitted from crystalline mediums such as Nd3+:KGd(WO4)2, Nd3+:PbWO4 that are commonly used as laser host materials and proved to be available Raman-active mediums. The Nd3+ doped crystals possess high stimulated emission cross-section for laser emission and high Raman gain coefficients for Raman transitions, but the required pump powers (typically hundreds of milliwatts) are large in those experiments.The whispering-gallery mode (WGM) of silica microsphere cavity has achieved the highest Q factor (8×109) to date. The high Q factor and small mode volume make it possible to realize a resonant buildup of high circulating optical intensities, thereby drastically reducing the threshold powers for laser oscillation and stimulated nonlinear process. The coupler with optical fiber taper allows the excitation of WGMs with ultralow coupling loss, which significantly improves the overall efficiency to produce stimulated Raman laser. In this paper, we report the observation of ultralow threshold self-stimulated Raman laser operating in an Nd3+ doped silica microsphere, and the wavelength range can be extended to O-waveband 1143 nm.A high Q microsphere is fabricated with a thin Nd3+ doped silica layer covered by sol-gel method, in which smooth surface is formed by electrical arc-heating. An optical taper fiber is employed to couple the 808 nm laser into Nd3+ doped microsphere (NDSM) to form whispering gallery mode, which acts as the pump light. Based on 4f electron of neodymium ion transmission and optical oscillation in microsphere, the stimulated laser with a wavelength band of 1080 nm-1097 nm is excited. Due to high power density of the excited laser near the surface of orbit in microsphere, the first order self-stimulated Raman laser with a wavelength range of 1120-1143 nm is stimulated in the high Q microsphere. In a theoretical model, the formulas for calculating the output power and the threshold power of the oscillation laser and the self-stimulated Raman scattering are derived. In experiment, we succeed in getting single-mode and multi-mode laser oscillation due to the 4f layer electron transitions of Nd3+ ions, pumped by 808 nm laser. The results show that the NDSM emits a typical single-mode output laser at 1116.8 nm with a pump power of 8.33 dBm, also the relationship between the 1116.8 nm output power and the pump power with a threshold pump power of 3.5 mW. The multi-mode laser spectrum dependent on the microsphere morphology characteristics is observed, which varies by changing the couple position of the optical fiber taper with microsphere. The characteristics of the laser are discussed including the output power, threshold power, spectral line width, side-mode suppression ratio, etc. The NDSM will have many potential applications in new compact lasers. It is beneficial to wavelength converter and optical amplifier in O band.
      Corresponding author: Huang Yan-Tang, huangyantang@fzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61405059).
    [1]

    Han L, Song F, Wan C S, Zou C G, Yan L H, Zhang K, Tian J G 2007 Acta Phys. Sin. 56 1751 (in Chinese) [韩琳, 宋峰, 万从尚, 邹昌光, 闫立华, 张康, 田建国 2007 物理学报 56 1751]

    [2]

    Cong Z H, Liu Z J, Qin Z G, Zhang X Y, Zhang H J, Li J, Yu H H, Wang Q T 2015 Opt. Laser Technol. 73 50

    [3]

    Cai W Y, Dun Y M, Li J T, Yan L F, Mao M J, Zhao B, Zhu H Y 2015 Chin. Phys. Lett. 32 034206

    [4]

    Su F F, Zhang X Y, Wang Q P, Wu F Q, Li S T, Zhang X L, Cong Z H 2008 Opt. Mater. 30 1895

    [5]

    Deng J, Lin J P, Huang J H, Zheng H, Lin J H, Shi F, Dai S T, Weng W, Kang Z J, Jinag X, Liu J, Lin W X 2010 Chin. Opt. Lett. 8 293

    [6]

    Lee A J, Pask H M, Spence D J, Piper J A 2010 Opt. Lett. 35 682

    [7]

    Su F F, Zhang X Y, Wang Q P, Jia P, Li S T, Liu B, Zhang X L, Cong Z H, Wu F Q 2007 Opt. Commun. 277 379

    [8]

    Basiev T T, Vassiliev S V, Doroshenko M E, Osiko V V 2006 Opt. Lett. 31 65

    [9]

    Simons J, Pask H, Dekker P, Piper J A 2002 Proc. SPIE 57 4630

    [10]

    Chen Y F 2004 Opt. Lett. 29 1251

    [11]

    Chen Y F 2004 Opt. Lett. 29 2632

    [12]

    Su F F, Zhang X Y, Wang Q P, Ding S H, Jia P, Li S T, Fan S Z, Zhang C, Liu B 2006 J. Phys. D 39 2090

    [13]

    Min B, Kippenberg T J, Yang L, Vahala K J 2004 Phys. Rev. A 70 033803

    [14]

    Ostby E P, Yang L, Vahala K J 2007 Opt. Lett. 32 2650

    [15]

    Yang L, Armani D K, Vahala K J 2003 Appl. Phys. Lett. 83 825

    [16]

    Yang L, Carmon T, Min B, Spillane S M, Vahala K J 2005 Appl. Phys. Lett. 86 091114

    [17]

    Wu T J, Huang Y T, Huang J, Huang Y, Zhang P J, Ma J 2014 Appl. Opt. 53 4747

    [18]

    Li Q L, Huang Y T, Lin Y J, Wu J S, Huang J, Wu T J 2015 Opt. Commun. 356 368

    [19]

    Guo C L, Huang Y, Zhang P J, Huang Y T 2013 Chin. J. Lasers 40 0302004 (in Chinese) [郭长磊, 黄玉, 张培进, 黄衍堂 2013 中国激光 40 0302004]

    [20]

    Jiang X F, Xiao Y F, Yang Q F, Shao L B, Clements W R, Gong Q G 2013 Appl. Phys. Lett. 103 101102

    [21]

    Min B, Kippenberg T J, Vahala K J 2003 Opt. Lett. 28 1507

    [22]

    Kippenberg T J, Spillane S M, Min B, Vahala K J 2004 IEEE J. Sel. Top. Quant. 10 1219

    [23]

    Kippenberg T J, Spillane S M, Armani D K, Vahala K J 2004 Opt. Lett. 29 1224

    [24]

    Spillane S M, Kippenberg T J, Vahala K J 2002 Nature 415 621

    [25]

    Zhang P J, Huang Y, Guo C L, Huang Y T 2013 Acta Phys. Sin. 62 224207 (in Chinese) [张培进, 黄玉, 郭长磊, 黄衍堂 2013 物理学报 62 224207]

    [26]

    Huang Y, Zhang P J, Guo C L, Huang Y T 2013 IEEE Photon. Tech. Lett. 25 1385

    [27]

    Takao A, Parkins A S, Alton D J, Regal C A, Dayan B, Ostby E, Vahala K J, Kimble H J 2009 Appl. Phys. Lett. 102 083601

    [28]

    Alton D J, Stern N P, Takao A, Lee H, Ostby E, Vahala K J, Kimble H J 2011 Nat. Phys. 7 159

    [29]

    Barak D, Parkins A S, Takao A, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062

    [30]

    Wang X H, Bao R Y, Huang Y T 2011 Inter. J. Theor. Phys. 50 473

    [31]

    Bao R Y, Wang X H, Huang Y T 2010 Chin. Phys. Lett. 27 083101

    [32]

    Li B B, Clements W R, Yu X C, Shi K B, Gong Q H, Xiao Y F 2014 Proc. Natl. Acad. Sci. USA 111 14657

    [33]

    Armani A M, Armani D K, Min B, Vahala K J, Spillane S M 2005 Appl. Phys. Lett. 87 151118

    [34]

    Cai Z P, Xu H Y 2003 Sens. Actuators A: Phys. 108 187

    [35]

    Guo C L, Che K J, Zhang P, Wu J S, Huang Y T, Xu H Y, Cai Z P 2015 Opt. Express 23 32261

    [36]

    Wu T J, Huang Y T, Ma J, Huang J, Huang Y, Zhang P J, Guo C L 2014 Acta Phys. Sin. 63 217805 (in Chinese) [吴天娇, 黄衍堂, 马靖, 黄婧, 黄玉, 张培进, 郭长磊 2014 物理学报 63 217805]

    [37]

    Huang Y T, Huang Y, Zhang P J, Guo C L 2014 AIP Adv. 4 027113

  • [1]

    Han L, Song F, Wan C S, Zou C G, Yan L H, Zhang K, Tian J G 2007 Acta Phys. Sin. 56 1751 (in Chinese) [韩琳, 宋峰, 万从尚, 邹昌光, 闫立华, 张康, 田建国 2007 物理学报 56 1751]

    [2]

    Cong Z H, Liu Z J, Qin Z G, Zhang X Y, Zhang H J, Li J, Yu H H, Wang Q T 2015 Opt. Laser Technol. 73 50

    [3]

    Cai W Y, Dun Y M, Li J T, Yan L F, Mao M J, Zhao B, Zhu H Y 2015 Chin. Phys. Lett. 32 034206

    [4]

    Su F F, Zhang X Y, Wang Q P, Wu F Q, Li S T, Zhang X L, Cong Z H 2008 Opt. Mater. 30 1895

    [5]

    Deng J, Lin J P, Huang J H, Zheng H, Lin J H, Shi F, Dai S T, Weng W, Kang Z J, Jinag X, Liu J, Lin W X 2010 Chin. Opt. Lett. 8 293

    [6]

    Lee A J, Pask H M, Spence D J, Piper J A 2010 Opt. Lett. 35 682

    [7]

    Su F F, Zhang X Y, Wang Q P, Jia P, Li S T, Liu B, Zhang X L, Cong Z H, Wu F Q 2007 Opt. Commun. 277 379

    [8]

    Basiev T T, Vassiliev S V, Doroshenko M E, Osiko V V 2006 Opt. Lett. 31 65

    [9]

    Simons J, Pask H, Dekker P, Piper J A 2002 Proc. SPIE 57 4630

    [10]

    Chen Y F 2004 Opt. Lett. 29 1251

    [11]

    Chen Y F 2004 Opt. Lett. 29 2632

    [12]

    Su F F, Zhang X Y, Wang Q P, Ding S H, Jia P, Li S T, Fan S Z, Zhang C, Liu B 2006 J. Phys. D 39 2090

    [13]

    Min B, Kippenberg T J, Yang L, Vahala K J 2004 Phys. Rev. A 70 033803

    [14]

    Ostby E P, Yang L, Vahala K J 2007 Opt. Lett. 32 2650

    [15]

    Yang L, Armani D K, Vahala K J 2003 Appl. Phys. Lett. 83 825

    [16]

    Yang L, Carmon T, Min B, Spillane S M, Vahala K J 2005 Appl. Phys. Lett. 86 091114

    [17]

    Wu T J, Huang Y T, Huang J, Huang Y, Zhang P J, Ma J 2014 Appl. Opt. 53 4747

    [18]

    Li Q L, Huang Y T, Lin Y J, Wu J S, Huang J, Wu T J 2015 Opt. Commun. 356 368

    [19]

    Guo C L, Huang Y, Zhang P J, Huang Y T 2013 Chin. J. Lasers 40 0302004 (in Chinese) [郭长磊, 黄玉, 张培进, 黄衍堂 2013 中国激光 40 0302004]

    [20]

    Jiang X F, Xiao Y F, Yang Q F, Shao L B, Clements W R, Gong Q G 2013 Appl. Phys. Lett. 103 101102

    [21]

    Min B, Kippenberg T J, Vahala K J 2003 Opt. Lett. 28 1507

    [22]

    Kippenberg T J, Spillane S M, Min B, Vahala K J 2004 IEEE J. Sel. Top. Quant. 10 1219

    [23]

    Kippenberg T J, Spillane S M, Armani D K, Vahala K J 2004 Opt. Lett. 29 1224

    [24]

    Spillane S M, Kippenberg T J, Vahala K J 2002 Nature 415 621

    [25]

    Zhang P J, Huang Y, Guo C L, Huang Y T 2013 Acta Phys. Sin. 62 224207 (in Chinese) [张培进, 黄玉, 郭长磊, 黄衍堂 2013 物理学报 62 224207]

    [26]

    Huang Y, Zhang P J, Guo C L, Huang Y T 2013 IEEE Photon. Tech. Lett. 25 1385

    [27]

    Takao A, Parkins A S, Alton D J, Regal C A, Dayan B, Ostby E, Vahala K J, Kimble H J 2009 Appl. Phys. Lett. 102 083601

    [28]

    Alton D J, Stern N P, Takao A, Lee H, Ostby E, Vahala K J, Kimble H J 2011 Nat. Phys. 7 159

    [29]

    Barak D, Parkins A S, Takao A, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062

    [30]

    Wang X H, Bao R Y, Huang Y T 2011 Inter. J. Theor. Phys. 50 473

    [31]

    Bao R Y, Wang X H, Huang Y T 2010 Chin. Phys. Lett. 27 083101

    [32]

    Li B B, Clements W R, Yu X C, Shi K B, Gong Q H, Xiao Y F 2014 Proc. Natl. Acad. Sci. USA 111 14657

    [33]

    Armani A M, Armani D K, Min B, Vahala K J, Spillane S M 2005 Appl. Phys. Lett. 87 151118

    [34]

    Cai Z P, Xu H Y 2003 Sens. Actuators A: Phys. 108 187

    [35]

    Guo C L, Che K J, Zhang P, Wu J S, Huang Y T, Xu H Y, Cai Z P 2015 Opt. Express 23 32261

    [36]

    Wu T J, Huang Y T, Ma J, Huang J, Huang Y, Zhang P J, Guo C L 2014 Acta Phys. Sin. 63 217805 (in Chinese) [吴天娇, 黄衍堂, 马靖, 黄婧, 黄玉, 张培进, 郭长磊 2014 物理学报 63 217805]

    [37]

    Huang Y T, Huang Y, Zhang P J, Guo C L 2014 AIP Adv. 4 027113

  • [1] Zeng Jia-Le, Lian Chang-Wang, Ji-Yu, Yan-Rui. Large-spatial-scale convective stimulated Raman side scattering in indirect drive conditions. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240045
    [2] Jiang Li-Ying, Yi Ying-Ting, Yi Zao, Yang Hua, Li Zhi-You, Su Ju, Zhou Zi-Gang, Chen Xi-Fang, Yi You-Gen. A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide. Acta Physica Sinica, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [3] Wu Jia-Chen, Song Zheng, Xie Yi-Feng, Zhou Xin-Yu, Zhou Pei, Mu Peng-Hua, Li Nian-Qiang. High-quality random number sequences extracted from chaos post-processed by phased-array semiconductor laser. Acta Physica Sinica, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [4] Jiang Kang-Nan, Feng Ke, Ke Lin-Tong, Yu Chang-Hai, Zhang Zhi-Jun, Qin Zhi-Yong, Liu Jian-Sheng, Wang Wen-Tao, Li Ru-Xin. High-quality laser wakefield electron accelerator. Acta Physica Sinica, 2021, 70(8): 084103. doi: 10.7498/aps.70.20201993
    [5] Li Ming, Yang Xing-Fan, Xu Zhou, Shu Xiao-Jian, Lu Xiang-Yang, Huang Wen-Hui, Wang Han-Bin, Dou Yu-Huan, Shen Xu-Ming, Shan Li-Jun, Deng De-Rong, Xu Yong, Bai Wei, Feng Di-Chao, Wu Dai, Xiao De-Xin, Wang Jian-Xin, Luo Xing, Zhou Kui, Lao Cheng-Long, Yan Long-Gang, Lin Si-Fen, Zhang Peng, Zhang Hao, He Tian-Hui, Pan Qing, Li Xiang-Kun, Li Peng, Liu Yu, Yang Lin-De, Liu Jie, Zhang De-Min, Li Kai, Chen Ya-Nan. Experimental study on the stimulated saturation of terahertz free electron laser. Acta Physica Sinica, 2018, 67(8): 084102. doi: 10.7498/aps.67.20172413
    [6] Huang Shan, Liu Ni, Liang Jiu-Qing. Stimulated radiation characteristics and quantum phase transition for two-component Bose-Einstein condensate in optical cavity. Acta Physica Sinica, 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [7] Zhang Pei-Jin, Huang Yu, Guo Chang-Lei, Huang Yan-Tang. Study of cascaded raman scattering laser in silica microsphere pumped by 976 nm laser. Acta Physica Sinica, 2013, 62(22): 224207. doi: 10.7498/aps.62.224207
    [8] Liu Zhan-Jun, Hao Liang, Xiang Jiang, Zheng Chun-Yang. Hybrid simulation of stimulated Brillouin scattering in laser fusions. Acta Physica Sinica, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [9] Chen Xiang, Mi Xian-Wu. Characteristics of spontaneous emission from a two-level atom in a very high Q cavity. Acta Physica Sinica, 2011, 60(10): 104204. doi: 10.7498/aps.60.104204
    [10] Han Lin, Song Feng, Wan Cong-Shang, Zou Chang-Guang, Yan Li-Hua, Zhang Kang, Tian Jian-Guo. Spectroscopic properties of self-exited Raman scattering of the Nd3+:SrMoO4 crystal. Acta Physica Sinica, 2007, 56(3): 1751-1757. doi: 10.7498/aps.56.1751
    [11] Tao Zong-Ming, Zhang Yin-Chao, Lü Yong-Hui, Hu Shun-Xing, Shao Shi-Sheng, Cao Kai-Fa, Liu Xiao-Qin, Yue Gu-Ming, Hu Huan-Ling. Effect of stimulated Raman scattering pumped by fourth harmonic Nd:YAG laser in methane and analysis of its physical processes. Acta Physica Sinica, 2004, 53(8): 2589-2594. doi: 10.7498/aps.53.2589
    [12] ZHANG JIA-TAI, XU LIN-BAO, CHANG TIE-QIANG, ZHANG SHO-GUI, NIE XIAO-BO, WANG SHI-HONG, WANG WEI-XING. STIMULATED RAMAN SCATTERING IN LASER PLASMA TARGETS. Acta Physica Sinica, 1991, 40(10): 1642-1651. doi: 10.7498/aps.40.1642
    [13] SHEN SHU-PO. JOINT EFFECT OF STIMULATED FOUR PHOTON MIXING AND STIMULATED RAMAN SCATTERING IN OPTICAL FIBER. Acta Physica Sinica, 1990, 39(4): 526-530. doi: 10.7498/aps.39.526
    [14] JIANG HUA-BEI. A STIMULATED TRANSITION RADIATION OPTICAL KLYSTRON. Acta Physica Sinica, 1990, 39(1): 61-66. doi: 10.7498/aps.39.61-2
    [15] SHAN JUN, LIN JIN-GU, SHE YONG-BO, JIN PEI, FU KE-JIAN, ZHANG ZHI-SAN. STIMULATED RAMAN SCATTERING OF Ti ATOMS FROM UV-LASER PHOTODISSOCIATION OF TiCl4. Acta Physica Sinica, 1990, 39(5): 754-763. doi: 10.7498/aps.39.754
    [16] LIU SHENG-GANG, SUN YAN. A STUDY ON THE RELATIONSHIP BETWEEN THE SPONTANEOUS RADIATION AND THE STIMULATED RADIATION IN TRANSITION RADIATION FREE ELECTRON LASERS. Acta Physica Sinica, 1988, 37(9): 1505-1509. doi: 10.7498/aps.37.1505
    [17] ZHANG YI-BO. STUDY OF RELATIONSHIP BETWEEN SPONTANEOUS RADIATION AND STIMULATED RADIATION IN CERENKOV FREE ELECTRON LASERS. Acta Physica Sinica, 1987, 36(10): 1344-1348. doi: 10.7498/aps.36.1344
    [18] MENG SHAO-XIAN, ZHANG WEI-QING, LIN LI-HUANG, LIN ZUN-QING, SHENG GUO-PING, XIE ZI-MING, KANG YU-YING. TEMPORAL BEHAVIOR OF QUASI-STATIONARY STIMULATED RAMAN SCATTERING. Acta Physica Sinica, 1985, 34(9): 1220-1223. doi: 10.7498/aps.34.1220
    [19] ZHANG FU-GENG. THE FORWARD RAMAN SCATTERING OF CIRCULARLY POLARIZED KrF EXCIMER LASER BEAM IN HYDROGEN GAS. Acta Physica Sinica, 1983, 32(9): 1211-1214. doi: 10.7498/aps.32.1211
    [20] WU CUN-KAI, FAN JUN-YIN, WANG ZHI-YING. A HIGH EFFICIENCY STIMULATED RAMAN SCATTERING SOURCE. Acta Physica Sinica, 1980, 29(5): 588-593. doi: 10.7498/aps.29.588
Metrics
  • Abstract views:  4803
  • PDF Downloads:  130
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2017
  • Accepted Date:  18 July 2017
  • Published Online:  05 December 2017

/

返回文章
返回