Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of trapping electrons on synergy of lower-hybrid wave and electron cyclotron wave

Yang You-Lei Hu Ye-Min Xiang Nong

Citation:

Effects of trapping electrons on synergy of lower-hybrid wave and electron cyclotron wave

Yang You-Lei, Hu Ye-Min, Xiang Nong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Steady state operation is essential for Tokamak-based fusion reactor, in which the plasma current has to be fully sustained and controlled by non-inductive methods. Lower-hybrid current drive is the most effective radio-frequency current drive method, which, however, has the drawback that the driven current profile is difficult to control. Electron cyclotron current drive has the ability to deposit power and drive current in a highly localized and robustly controllable way, while the efficiency of electron cyclotron current drive is known to be significantly lower than that of lower-hybrid current drive. Due to those complementary features, the combinative usage of lower-hybrid wave and electron cyclotron wave has been proposed. The current driven by simultaneously using the waves might be significantly larger than the sum of the currents driven by the waves individually in the same plasma conditions, which is the so-called synergy effect. While the lower-hybrid current drive and the electron cyclotron current drive are both affected by the trapping effect, which implies that the synergy effect between lower-hybrid current drive and the electron cyclotron current drive may also closely related to the trapping effect. In this paper, the effects of trapping on the synergy of lower-hybrid current drive and the electron cyclotron current drive are investigated by solving the bounce-averaged quasi-linear equation with different trapping angles. The diffusions induced by the lower-hybrid wave and the electron cyclotron wave are considered simultaneously. The resulting steady-state electron distribution function as a balance between the collisions and the wave-induced diffusions is obtained numerically by the CQL3D code, which is then integrated to calculate the driven plasma current. The velocity-space fluxes are analyzed for understanding the mechanism and the physics of the synergy process. It is found that the currents driven by the waves decrease as trapping angle increases. The synergy factors also decrease as trapping angle increases, which means that the current drive processes in the synergy case are more sensitive to the trapping effect than in the single wave case. The current driven by electron cyclotron wave drops rapidly with the increase of trapping angle, while the existence of lower-hybrid wave is helpful in decelerating the dropping. The lower-hybrid wave reduces the dependency of the electron cyclotron current drive on the trapping effect. The decouple effect turns stronger as the resonance region of the lower-hybrid wave becomes wider. Increasing the power of the electron cyclotron wave leads to more accelerated electrons and more electrons with relatively high parallel velocities, which results in stronger synergy effect and less dependence on trapping.
      Corresponding author: Hu Ye-Min, yeminhu@ipp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475220, 11375234).
    [1]

    Gormezano C, Sips A C C, Luce T C, Ide S, Becoulet A, Litaudon X, Isayama A, Hobirk J, Wade M R, Oikawa T, Prater R, Zvonkov A, Lloyd B, Suzuki T, Barbato E, Bonoli P, Phillips C K, Vdovin V, Joffrin E, Casper T, Ferron J, Mazon D, Moreau D, Bundy R, Kessel C, Fukuyama A, Hayashi N, Imbeaux F, Murakami M, Polevoi A R, St John H E 2007 Nucl. Fusion 47 S285

    [2]

    Fisch N J 1978 Phys. Rev. Lett. 41 873

    [3]

    Bonoli P T, Englade R C 1986 Phys. Fluids 29 2937

    [4]

    Peysson Y, Decker J, Nilsson E, Artaud J F, Ekedahl A, Goniche M, Hillairet J, Ding B, Li M, Bonoli P T, Shiraiwa S, Madi M 2016 Plasma Phys. Contr. Fusion 58 044008

    [5]

    Cesario R, Amicucci L, Castaldo C, Kempenaars M, Jachmich S, Mailloux J, Tudisco O, Galli A, Krivska A, Contributors J E 2011 Plasma Phys. Contr. Fusion 53 085011

    [6]

    Ding B J, Li M H, Liu F K, Shan J F, Li Y C, Wang M, Liu L, Zhao L M, Yang Y, Wu Z G, Feng J Q, Hu H C, Jia H, Cheng M, Zang Q, Lyu B, Duan Y M, Lin S Y, Wu J H, Hillairet J, Ekedahl A, Peysson Y, Goniche M, Tuccillo A A, Cesario R, Amicucci L, Shen B, Gong X Z, Xu G S, Zhao H L, Hu L Q, Li J G, Wan B N, EAST Team 2017 Nucl. Fusion 57 022022

    [7]

    Goniche M, Sharma P K, Basiuk V, Baranov Y, Castaldo C, Cesario R, Decker J, Delpech L, Ekedahl A, Hillairet J, Kirov K, Mazon D, Oosako T, Peysson Y, Prou M 2011 AIP Conf. Proc. 1406 407

    [8]

    Li J G, Luo J R, Wan B N, Liu Y X, Gong X Z, Li D C, Jie Y X, Li Z X, Xu X D 2000 Acta Phys. Sin. 49 2414 (in Chinese) [李建刚, 罗家融, 万宝年, 刘岳修, 龚先祖, 李多传, 揭银先, 李智秀, 徐东 2000 物理学报 49 2414]

    [9]

    Decker J, Peysson Y, Hillairet J, Artaud J F, Basiuk V, Becoulet A, Ekedahl A, Goniche M, Hoang G T, Imbeaux F, Ram A K, Schneider M 2011 Nucl. Fusion 51 073025

    [10]

    Song Y T, Wu S T, Li J G, Wan B N, Wan Y X, Fu P, Ye M Y, Zheng J X, Lu K, Gao X G, Liu S M, Liu X F, Lei M Z, Peng X B, Chen Y 2014 IEEE Trans. Plasma Sci. 42 503

    [11]

    Prater R 2004 Phys. Plasmas 11 2349

    [12]

    Gnter S, Gantenbein G, Gude A, Igochine V, Maraschek M, Mck A, Saarelma S, Sauter O, Sips A C C, Zohm H 2003 Nucl. Fusion 43 161

    [13]

    Henderson M A, Alberti S, Angioni C, Arnoux G, Behn R, Blanchard P, Bosshard P, Camenen Y, Coda S, Condrea I, Goodman T P, Hofmann F, Hogge J P, Karpushov A, Manini A, Martynov A, Moret J M, Nikkola P, Nelson-Melby E, Pochelon A, Porte L, Sauter O, Ahmed S M, Andrebe Y, Appert K, Chavan R, Degeling A, Duval B P, Etienne P, Fasel D, Fasoli A, Favez J Y, Furno I, Horacek J, Isoz P, Joye B, Klimanov I, Lavanchy P, Lister J B, Llobet X, Magnin J C, Marletaz B, Marmillod P, Martin Y, Mayor J M, Mylnar J, Paris P J, Perez A, Peysson Y, Pitts R A, Raju D, Reimerdes H, Scarabosio A, Scavino E, Seo S H, Siravo U, Sushkov A, Tonetti G, Tran M Q, Weisen H, Wischmeier M, Zabolotsky A, Yhuang G 2003 Phys. Plasmas 10 1796

    [14]

    Fisch N J, Boozer A H 1980 Phys. Rev. Lett. 45 720

    [15]

    Alikaev V V, Parail V V 1991 Plasma Phys. Contr. Fusion 33 1639

    [16]

    Ridolfini V P, Barbato E, Bruschi A, Dumont R, Gandini F, Giruzzi G, Gormezano C, Granucci G, Panaccione L, Peysson Y, Podda S, Saveliev A N 2001 AIP Conf. Proc. 595 225

    [17]

    Chen S Y, Tang C J, Zhang X J 2013 Chin. Phys. Lett. 30 065202

    [18]

    Giruzzi G, Artaud J F, Dumont R J, Imbeaux F, Bibet P, Berger-By G, Bouquey F, Clary J, Darbos C, Ekedahl A, Hoang G T, Lennholm M, Maget P, Magne R, Segui J L, Bruschi A, Granucci G 2004 Phys. Rev. Lett. 93 255002

    [19]

    Fidone I, Giruzzi G, Granata G, Meyer R L 1984 Phys. Fluids 27 2468

    [20]

    Maehara T, Yoshimura S, Minami T, Hanada K, Nakamura M, Maekawa T, Terumichi Y 1998 Nucl. Fusion 38 39

    [21]

    Chen S Y, Hong B B, Liu Y, Lu W, Huang J, Tang C J, Ding X T, Zhang X J, Hu Y J 2012 Plasma Phys. Contr. Fusion 54 115002

    [22]

    Huang J, Bai X Y, Zeng H, Tang C J 2013 Acta Phys. Sin. 62 025202 (in Chinese) [黄捷, 白兴宇, 曾浩, 唐昌建 2013 物理学报 62 025202]

    [23]

    Hong B B, Chen S Y, Tang C J, Zhang X J, Hu Y J 2012 Acta Phys. Sin. 61 115207 (in Chinese) [洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊 2012 物理学报 61 115207]

    [24]

    Dumont R J, Giruzzi G 2005 Radio Frequency Power in Plasmas 787 257

    [25]

    Dumont R J, Giruzzi G 2004 Phys. Plasmas 11 3449

    [26]

    Jiao Y M, Long Y X, Dong J Q, Shi B R, Gao Q D 2005 Acta Phys. Sin. 54 180 (in Chinese) [焦一鸣, 龙永兴, 董家齐, 石秉仁, 高庆弟 2005 物理学报 54 180]

    [27]

    Harvey R W, Mccoy M G 1992 IAEA Technical Committee Meeting on Advances in Simulation and Modeling of Thermonuclear Plasmas (Montreal: IAEA Institute of Physics Publishing) pp489-526

    [28]

    Kennel C F, Engelmann F 1966 Phys. Fluids 9 2377

  • [1]

    Gormezano C, Sips A C C, Luce T C, Ide S, Becoulet A, Litaudon X, Isayama A, Hobirk J, Wade M R, Oikawa T, Prater R, Zvonkov A, Lloyd B, Suzuki T, Barbato E, Bonoli P, Phillips C K, Vdovin V, Joffrin E, Casper T, Ferron J, Mazon D, Moreau D, Bundy R, Kessel C, Fukuyama A, Hayashi N, Imbeaux F, Murakami M, Polevoi A R, St John H E 2007 Nucl. Fusion 47 S285

    [2]

    Fisch N J 1978 Phys. Rev. Lett. 41 873

    [3]

    Bonoli P T, Englade R C 1986 Phys. Fluids 29 2937

    [4]

    Peysson Y, Decker J, Nilsson E, Artaud J F, Ekedahl A, Goniche M, Hillairet J, Ding B, Li M, Bonoli P T, Shiraiwa S, Madi M 2016 Plasma Phys. Contr. Fusion 58 044008

    [5]

    Cesario R, Amicucci L, Castaldo C, Kempenaars M, Jachmich S, Mailloux J, Tudisco O, Galli A, Krivska A, Contributors J E 2011 Plasma Phys. Contr. Fusion 53 085011

    [6]

    Ding B J, Li M H, Liu F K, Shan J F, Li Y C, Wang M, Liu L, Zhao L M, Yang Y, Wu Z G, Feng J Q, Hu H C, Jia H, Cheng M, Zang Q, Lyu B, Duan Y M, Lin S Y, Wu J H, Hillairet J, Ekedahl A, Peysson Y, Goniche M, Tuccillo A A, Cesario R, Amicucci L, Shen B, Gong X Z, Xu G S, Zhao H L, Hu L Q, Li J G, Wan B N, EAST Team 2017 Nucl. Fusion 57 022022

    [7]

    Goniche M, Sharma P K, Basiuk V, Baranov Y, Castaldo C, Cesario R, Decker J, Delpech L, Ekedahl A, Hillairet J, Kirov K, Mazon D, Oosako T, Peysson Y, Prou M 2011 AIP Conf. Proc. 1406 407

    [8]

    Li J G, Luo J R, Wan B N, Liu Y X, Gong X Z, Li D C, Jie Y X, Li Z X, Xu X D 2000 Acta Phys. Sin. 49 2414 (in Chinese) [李建刚, 罗家融, 万宝年, 刘岳修, 龚先祖, 李多传, 揭银先, 李智秀, 徐东 2000 物理学报 49 2414]

    [9]

    Decker J, Peysson Y, Hillairet J, Artaud J F, Basiuk V, Becoulet A, Ekedahl A, Goniche M, Hoang G T, Imbeaux F, Ram A K, Schneider M 2011 Nucl. Fusion 51 073025

    [10]

    Song Y T, Wu S T, Li J G, Wan B N, Wan Y X, Fu P, Ye M Y, Zheng J X, Lu K, Gao X G, Liu S M, Liu X F, Lei M Z, Peng X B, Chen Y 2014 IEEE Trans. Plasma Sci. 42 503

    [11]

    Prater R 2004 Phys. Plasmas 11 2349

    [12]

    Gnter S, Gantenbein G, Gude A, Igochine V, Maraschek M, Mck A, Saarelma S, Sauter O, Sips A C C, Zohm H 2003 Nucl. Fusion 43 161

    [13]

    Henderson M A, Alberti S, Angioni C, Arnoux G, Behn R, Blanchard P, Bosshard P, Camenen Y, Coda S, Condrea I, Goodman T P, Hofmann F, Hogge J P, Karpushov A, Manini A, Martynov A, Moret J M, Nikkola P, Nelson-Melby E, Pochelon A, Porte L, Sauter O, Ahmed S M, Andrebe Y, Appert K, Chavan R, Degeling A, Duval B P, Etienne P, Fasel D, Fasoli A, Favez J Y, Furno I, Horacek J, Isoz P, Joye B, Klimanov I, Lavanchy P, Lister J B, Llobet X, Magnin J C, Marletaz B, Marmillod P, Martin Y, Mayor J M, Mylnar J, Paris P J, Perez A, Peysson Y, Pitts R A, Raju D, Reimerdes H, Scarabosio A, Scavino E, Seo S H, Siravo U, Sushkov A, Tonetti G, Tran M Q, Weisen H, Wischmeier M, Zabolotsky A, Yhuang G 2003 Phys. Plasmas 10 1796

    [14]

    Fisch N J, Boozer A H 1980 Phys. Rev. Lett. 45 720

    [15]

    Alikaev V V, Parail V V 1991 Plasma Phys. Contr. Fusion 33 1639

    [16]

    Ridolfini V P, Barbato E, Bruschi A, Dumont R, Gandini F, Giruzzi G, Gormezano C, Granucci G, Panaccione L, Peysson Y, Podda S, Saveliev A N 2001 AIP Conf. Proc. 595 225

    [17]

    Chen S Y, Tang C J, Zhang X J 2013 Chin. Phys. Lett. 30 065202

    [18]

    Giruzzi G, Artaud J F, Dumont R J, Imbeaux F, Bibet P, Berger-By G, Bouquey F, Clary J, Darbos C, Ekedahl A, Hoang G T, Lennholm M, Maget P, Magne R, Segui J L, Bruschi A, Granucci G 2004 Phys. Rev. Lett. 93 255002

    [19]

    Fidone I, Giruzzi G, Granata G, Meyer R L 1984 Phys. Fluids 27 2468

    [20]

    Maehara T, Yoshimura S, Minami T, Hanada K, Nakamura M, Maekawa T, Terumichi Y 1998 Nucl. Fusion 38 39

    [21]

    Chen S Y, Hong B B, Liu Y, Lu W, Huang J, Tang C J, Ding X T, Zhang X J, Hu Y J 2012 Plasma Phys. Contr. Fusion 54 115002

    [22]

    Huang J, Bai X Y, Zeng H, Tang C J 2013 Acta Phys. Sin. 62 025202 (in Chinese) [黄捷, 白兴宇, 曾浩, 唐昌建 2013 物理学报 62 025202]

    [23]

    Hong B B, Chen S Y, Tang C J, Zhang X J, Hu Y J 2012 Acta Phys. Sin. 61 115207 (in Chinese) [洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊 2012 物理学报 61 115207]

    [24]

    Dumont R J, Giruzzi G 2005 Radio Frequency Power in Plasmas 787 257

    [25]

    Dumont R J, Giruzzi G 2004 Phys. Plasmas 11 3449

    [26]

    Jiao Y M, Long Y X, Dong J Q, Shi B R, Gao Q D 2005 Acta Phys. Sin. 54 180 (in Chinese) [焦一鸣, 龙永兴, 董家齐, 石秉仁, 高庆弟 2005 物理学报 54 180]

    [27]

    Harvey R W, Mccoy M G 1992 IAEA Technical Committee Meeting on Advances in Simulation and Modeling of Thermonuclear Plasmas (Montreal: IAEA Institute of Physics Publishing) pp489-526

    [28]

    Kennel C F, Engelmann F 1966 Phys. Fluids 9 2377

  • [1] Fan Hao, Chen Shao-yong, Mou Mao-lin, Liu Tai-qi, Zhang Ye-min, Tang Chang-jian. Study on the influence of lower hybrid wave injection on peeling-ballooning modes. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240130
    [2] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [3] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [4] He Yu-Juan, Zhang Xiao-Wen, Liu Yuan. Total dose dependence of hot carrier injection effect in the n-channel metal oxide semiconductor devices. Acta Physica Sinica, 2016, 65(24): 246101. doi: 10.7498/aps.65.246101
    [5] Huang Jie, Bai Xing-Yu, Zeng Hao, Tang Chang-Jian. Research on coupling characteristics of low hybrid wave in the presence of electron cyclotron wave in Tokamak. Acta Physica Sinica, 2013, 62(2): 025202. doi: 10.7498/aps.62.025202
    [6] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [7] Lu Hong-Wei, Hu Li-Qun, Zhou Rui-Jie, Xu Ping, Zhong Guo-Qiang, Lin Shi-Yao, Wang Shao-Feng. Runaway electrons behaviors during ion cycolotron range of frequency and lower hybrid wave plasmas in the HT-7 Tokamak. Acta Physica Sinica, 2010, 59(10): 7175-7181. doi: 10.7498/aps.59.7175
    [8] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [9] Jiao Yi-Ming, Long Yong-Xing, Dong Jia-Qi, Shi Bing-Ren, Gao Qing-Di. Effects of the trapping effect on LHCD in tokamak. Acta Physica Sinica, 2005, 54(1): 180-185. doi: 10.7498/aps.54.180
    [10] LI JIAN-GANG LUO, JIA-RONG, WAN BAO-NIAN, LIU YUE-XIU, GONG XIAN-ZU, LI DUO-CHUAN, JIE YIN-XIAN, LI ZHI-XIU, XU XIANG-DONG. IMPROVEMENT OF CONFINEMENT BY LOWER HYBRID WAVES. Acta Physica Sinica, 2000, 49(12): 2414-2419. doi: 10.7498/aps.49.2414
    [11] LIU CAI-GEN, QIAN SHANG-JIE, WAN HUA-MING. POLOIDALLY SPIN UP GENERATED BY ELECTRON CYCLOTRON RESONANCE HEATING IN CORE TOKAMAK PLASMAS. Acta Physica Sinica, 1998, 47(9): 1515-1519. doi: 10.7498/aps.47.1515
    [12] WU JUN-LING. THE RELATIVISTIC ELECTRON CYCLOTRON WAVE DISPERSION RELATION IN PLASMA. Acta Physica Sinica, 1993, 42(5): 775-784. doi: 10.7498/aps.42.775
    [13] ZHOU XIAO-BING, ZHAO CHANG-LIN. TRANSITION BETWEEN TRAPPED ELECTRONS AND RUNAWAY ELECTRONS INDUCED BY ELECTRON CYCLOTRON WAVE IN MAGNETIC MIRROR PLASMA. Acta Physica Sinica, 1993, 42(8): 1257-1265. doi: 10.7498/aps.42.1257
    [14] XIONG XING-MIN. INFLUENCE OF HYDROGEN AND TEMPERATURE ON POSITRON TRAPPING IN PROTON-IRRADIATED SILICON. Acta Physica Sinica, 1992, 41(1): 162-169. doi: 10.7498/aps.41.162
    [15] BIAN BO-DA, LIN JING, GUO SHI-CHONG, CAI SHI-DONG. WHISTLER INSTABILITY WITH WEAKLY RELATIVISTIC TRAPPED ELECTRONS. Acta Physica Sinica, 1990, 39(2): 218-224. doi: 10.7498/aps.39.218
    [16] ZHANG JUN, WANG EN-YAO, GUAN WEI-SHU, CHENG SHI-QING, DUAN SHU-YUN, GU BIAO, SHANG ZHEN-KUI. EXPERIMENTAL STUDY ON ECRH TRAPPED ELECTRON BEAM INJECTED INTO THE SIMPLE MIRROR. Acta Physica Sinica, 1990, 39(8): 115-120. doi: 10.7498/aps.39.115-2
    [17] XIA MENG-FEN, WU WEI-MIN. THE EFFECTS OF ACCELERATION DRIVEN BY LOWER-HYBRID WAVES. Acta Physica Sinica, 1989, 38(4): 619-628. doi: 10.7498/aps.38.619
    [18] XIA MENG-FEN. LOWER-HYBRID-DRIVEN RADIAL ENERGY TRANSPORT OF RESONANT ELECTRONS. Acta Physica Sinica, 1988, 37(8): 1381-1385. doi: 10.7498/aps.37.1381
    [19] XIA MENG-FEN, WU WEI-MIN. RADIAL RESONANT ELECTRON FLOW DRIVEN BY LOWER-HYBRID WAVES. Acta Physica Sinica, 1987, 36(7): 881-891. doi: 10.7498/aps.36.881
    [20] LI DA-FENG, MA ZHONG-FANG, CHEN JI. THE TWO-DIMENSIONAL NONLINEAR EFFECTS OF PONDEROMOTIVE FORCE OF LOWER HYBRID WAVE. Acta Physica Sinica, 1982, 31(2): 170-179. doi: 10.7498/aps.31.170
Metrics
  • Abstract views:  4269
  • PDF Downloads:  114
  • Cited By: 0
Publishing process
  • Received Date:  03 May 2017
  • Accepted Date:  18 August 2017
  • Published Online:  05 December 2017

/

返回文章
返回