Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and electrochemical properties of Ni-Co layered double hydroxides with high performance

Feng Yan-Yan Huang Hong-Bin Zhang Xin-Ju Yi Ya-Jun Yang Wen

Citation:

Synthesis and electrochemical properties of Ni-Co layered double hydroxides with high performance

Feng Yan-Yan, Huang Hong-Bin, Zhang Xin-Ju, Yi Ya-Jun, Yang Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Supercapacitor is a new-type energy storage device with the promising application prospect, and its development mainly relies on the development of electrode materials. In this work, a series of nickel-cobalt (Ni-Co) layered double hydroxides is synthesized via a simple hydrothermal method by using nickel and cobalt salts with four different anions (including sulfate, chlorate, acetate and nitrate) serving as nickel and cobalt sources. According to the types of salts, the obtained samples are named Ni-Co(SO4), Ni-Co(Cl), Ni-Co(Ac) and Ni-Co(NO3), respectively. The morphology and structure of Ni-Co layered double hydroxide are characterized by X-ray diffraction and scanning electron microscopy (SEM), respectively, and the electrochemical properties of the sample are investigated by CHI660D electrochemical workstation in 2 M KOH aqueous solution. The results demonstrate that the types of nickel and cobalt salts not only affect the morphology and structure of Ni-Co layered double hydroxide, but also significantly influence the electrochemical properties of the sample. The SEM images show that the Ni-Co layered double hydroxide synthesized with nickel sulfate and cobalt sulfate (Ni-Co(SO4)) possesses loose layer structure, which can provide abundant active sites and benefit the diffusion of electrolyte. The electrochemical test results show that the specific capacitances of Ni-Co(SO4), Ni-Co(Cl), Ni-Co(Ac) and Ni-Co(NO3) under a current density of 1 A/g at a potential window of 0.45 V, are 1551.1 F/g, 440.7 F/g, 337.8 F/g and 141.6 F/g respectively. As the current density increases from 1 A/g to 7 A/g, the capacitive retention rates of Ni-Co(SO4), Ni-Co(Cl), Ni-Co(Ac) and Ni-Co(NO3) are kept at 60.1%, 21.7%, 4.6% and 6.0%, respectively. The results of alternating current (AC) impedance test display that the electron transfer resistance follows an increasing trend:R[Ni-Co(SO4)] R[Ni-Co(Cl)] R[Ni-Co(Ac)] R[Ni-Co(NO3)]. The small electron transfer resistance is conducive to excellent capacitance at the high current density. Therefore, the excellent capacitive performance of the sample Ni-Co(SO4) is ascribed to the loose layer structure and low electron transfer resistance. In addition, the cycling stabilities of the samples are investigated by constant current charge-discharge test. The capacitive value of the sample Ni-Co(SO4) declines by 16% for 1000 cycles at a current density of 7 A/g. The capacitance decrease can be ascribed to the damage to the layered structure and the increase of the electron transfer resistance in the multiple constant current charge-discharge processes as shown in the results of SEM and AC impedance before and after cycle. This study provides a foundation for exploiting and utilizing high-performance nickel-cobalt layered double hydroxides as electrode material of supercapacitor.
      Corresponding author: Yang Wen, yangwen167@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21606058), the Guangxi Basic Ability Promotion Program for Middle-aged and Young Teachers, China (Grant No. 2017KY0268), the Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, China (Grant No. EMFM20161204), and the Startup Foundation for Doctors of Guilin University of Technology, China (Grant No. 002401003512).
    [1]

    Qu D 2002 J. Power Sources 109 403

    [2]

    Xie L J, Sun G H, Xie L F, Su F Y, Li X M, Liu Z, Kong Q Q, L C X, Li K X, Chen C M 2016 New Carbon Mater. 31 37 (in Chinese) [谢莉婧, 孙国华, 谢龙飞, 苏方远, 李晓明, 刘卓, 孔庆强, 吕春祥, 李开喜, 陈成猛 2016 新型炭材料 31 37]

    [3]

    Rakhi R B, Chen W, Cha D, Alshareef H N 2011 J. Mater. Chem. 21 16197

    [4]

    Jiang J W, Zhang X G, Su L H, Zhang L H, Zhang F 2010 Inorg. Chem. 26 1623 (in Chinese) [蒋健伟, 张校刚, 苏凌浩, 章罗江, 张方 2010 无机化学学报 26 1623]

    [5]

    Guo Q P, Liu X H, Zhao J W, Qin L R 2017 J. Southwest China Norm. Univ. 42 96 (in Chinese) [郭秋萍, 刘晓会, 赵建伟, 秦丽溶 2017 西南师范大学学报 (自然科学版) 42 96]

    [6]

    Zhang L L, Zhao X S 2009 Chem. Soc. Rev. 38 2520

    [7]

    Yang W, Feng Y, Wang N, Yuan H, Xiao D 2015 J. Alloy. Compd. 644 836

    [8]

    Xi D, Chen X M 2013 J. Shanghai Norm. Univ. 42 260 (in Chinese) [奚栋, 陈心满 2013 上海师范大学学报(自然科学版) 42 260]

    [9]

    Yin Y, Liu C, Fan S 2012 J. Phys. Chem. C 116 26185

    [10]

    Yang W, Gao Z, Song N, Zhang Y, Yang Y, Wang J 2014 J. Power Sources 272 915

    [11]

    Giri S, Das C K, Kalra S S 2012 J. Mater. Sci. Res. 1 10

    [12]

    Wu J Z, Lu D D, Zhang R, Zhu Y R, Yang S Y, Zhu R S, Yi T F 2016 Mod. Chem. Ind. 2 80 (in Chinese) [武金珠, 卢丹丹, 张瑞, 朱彦荣, 杨双瑗, 诸荣孙, 伊廷锋 2016 现代化工 2 80]

    [13]

    He J, Wei M, Li B, Kang Y, Evans D G 2007 Interf. Sci. Technol. 38 345

    [14]

    Mavis B, Akinc M 2004 J. Power Sources 134 308

    [15]

    Cao G T, Xue J L, Xia S J, Ni Z M 2016 J. Chin. Ceram. Soc. 44 726 (in Chinese) [曹根庭, 薛继龙, 夏盛杰, 倪哲明 2016 硅酸盐学报 44 726]

    [16]

    Niu Y L, Jin X, Zheng J, Li Z J, Gu Z G, Yan T, Fang Y J 2012 Chin. J. Inorg. Chem. 28 1878

    [17]

    Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T 2006 J. Am. Chem. Soc. 128 4872

    [18]

    Gao X, L H, Li Z, Xu Q, Liu H, Wang Y, Xia Y 2016 RSC Adv. 6 107278

    [19]

    Yan L, Kong H, Li Z J 2013 Acta Chim. Sin. 71 822 (in Chinese) [严琳, 孔惠, 李在均 2013 化学学报 71 822]

    [20]

    Sun X, Wang G, Sun H, Lu F, Yu M, Lian J 2013 J. Power Sources 238 150

    [21]

    Koilraj P, Srinivasan K 2013 Ind. Eng. Chem. Res. 52 7373

    [22]

    Pang X, Ma Z Q, Zuo L 2009 Acta Phys.-Chim. Sin. 25 2433 (in Chinese) [庞旭, 马正青, 左列 2009 物理化学学报 25 2433]

  • [1]

    Qu D 2002 J. Power Sources 109 403

    [2]

    Xie L J, Sun G H, Xie L F, Su F Y, Li X M, Liu Z, Kong Q Q, L C X, Li K X, Chen C M 2016 New Carbon Mater. 31 37 (in Chinese) [谢莉婧, 孙国华, 谢龙飞, 苏方远, 李晓明, 刘卓, 孔庆强, 吕春祥, 李开喜, 陈成猛 2016 新型炭材料 31 37]

    [3]

    Rakhi R B, Chen W, Cha D, Alshareef H N 2011 J. Mater. Chem. 21 16197

    [4]

    Jiang J W, Zhang X G, Su L H, Zhang L H, Zhang F 2010 Inorg. Chem. 26 1623 (in Chinese) [蒋健伟, 张校刚, 苏凌浩, 章罗江, 张方 2010 无机化学学报 26 1623]

    [5]

    Guo Q P, Liu X H, Zhao J W, Qin L R 2017 J. Southwest China Norm. Univ. 42 96 (in Chinese) [郭秋萍, 刘晓会, 赵建伟, 秦丽溶 2017 西南师范大学学报 (自然科学版) 42 96]

    [6]

    Zhang L L, Zhao X S 2009 Chem. Soc. Rev. 38 2520

    [7]

    Yang W, Feng Y, Wang N, Yuan H, Xiao D 2015 J. Alloy. Compd. 644 836

    [8]

    Xi D, Chen X M 2013 J. Shanghai Norm. Univ. 42 260 (in Chinese) [奚栋, 陈心满 2013 上海师范大学学报(自然科学版) 42 260]

    [9]

    Yin Y, Liu C, Fan S 2012 J. Phys. Chem. C 116 26185

    [10]

    Yang W, Gao Z, Song N, Zhang Y, Yang Y, Wang J 2014 J. Power Sources 272 915

    [11]

    Giri S, Das C K, Kalra S S 2012 J. Mater. Sci. Res. 1 10

    [12]

    Wu J Z, Lu D D, Zhang R, Zhu Y R, Yang S Y, Zhu R S, Yi T F 2016 Mod. Chem. Ind. 2 80 (in Chinese) [武金珠, 卢丹丹, 张瑞, 朱彦荣, 杨双瑗, 诸荣孙, 伊廷锋 2016 现代化工 2 80]

    [13]

    He J, Wei M, Li B, Kang Y, Evans D G 2007 Interf. Sci. Technol. 38 345

    [14]

    Mavis B, Akinc M 2004 J. Power Sources 134 308

    [15]

    Cao G T, Xue J L, Xia S J, Ni Z M 2016 J. Chin. Ceram. Soc. 44 726 (in Chinese) [曹根庭, 薛继龙, 夏盛杰, 倪哲明 2016 硅酸盐学报 44 726]

    [16]

    Niu Y L, Jin X, Zheng J, Li Z J, Gu Z G, Yan T, Fang Y J 2012 Chin. J. Inorg. Chem. 28 1878

    [17]

    Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T 2006 J. Am. Chem. Soc. 128 4872

    [18]

    Gao X, L H, Li Z, Xu Q, Liu H, Wang Y, Xia Y 2016 RSC Adv. 6 107278

    [19]

    Yan L, Kong H, Li Z J 2013 Acta Chim. Sin. 71 822 (in Chinese) [严琳, 孔惠, 李在均 2013 化学学报 71 822]

    [20]

    Sun X, Wang G, Sun H, Lu F, Yu M, Lian J 2013 J. Power Sources 238 150

    [21]

    Koilraj P, Srinivasan K 2013 Ind. Eng. Chem. Res. 52 7373

    [22]

    Pang X, Ma Z Q, Zuo L 2009 Acta Phys.-Chim. Sin. 25 2433 (in Chinese) [庞旭, 马正青, 左列 2009 物理化学学报 25 2433]

  • [1] Fu Chong-Yuan, Xing Song, Shen Tao, Tai Bo, Dong Qian-Min, Shu Hai-Bo, Liang Pei. Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method. Acta Physica Sinica, 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [2] Bo Xiao-Qing, Liu Chang-Bai, Li Hai-Ying, Liu Li, Guo Xin, Liu Zhen, Liu Li-Li, Su Chang. Synthesis of porous micro-sphere ZnO and its excellent sensing properties to acetone. Acta Physica Sinica, 2014, 63(17): 176803. doi: 10.7498/aps.63.176803
    [3] Wang Chang-Yuan, Yang Xiao-Hong, Ma Yong, Feng Yuan-Yuan, Xiong Jin-Long, Wang Wei. Microstructure and photoluminescence of ZnO:Cd nanorods synthesized by hydrothermal method. Acta Physica Sinica, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [4] Wang Dong-Dong, Gao Hui. Synthesis and magnetic properties of three-dimensional self-assembly Eu3+-graphene composite material. Acta Physica Sinica, 2013, 62(18): 188102. doi: 10.7498/aps.62.188102
    [5] Chen Xian-Mei, Gao Xiao-Yong, Zhang Sa, Liu Hong-Tao. Influence of thermal decomposition temperature of zinc acetate on the structural and the optical properties of ZnO nanorods. Acta Physica Sinica, 2013, 62(4): 049102. doi: 10.7498/aps.62.049102
    [6] Li Yi-Tong, Shen Liang-Ping, Wang Hao, Wang Han-Bin. Investigation on the thermal and electrical conductivity of water based zinc oxide nanofluids. Acta Physica Sinica, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [7] Wan Bu-Yong, Yuan Jin-She, Feng Qing, Wang Ao. Hydrothermal synthesis of K, Na doped Cu-S nanocrystalline and effect of doping on crystal structure and performance. Acta Physica Sinica, 2013, 62(17): 178102. doi: 10.7498/aps.62.178102
    [8] Chen Xian-Mei, Wang Xiao-Xia, Gao Xiao-Yong, Zhao Xian-Wei, Liu Hong-Tao, Zhang Sa. Investigation on the fabrication of Ag-doped ZnO nanorods by hydrothermal method. Acta Physica Sinica, 2013, 62(5): 056104. doi: 10.7498/aps.62.056104
    [9] Li Ming-Yang, Yu Ming-Lang, Su Qing, Liu Xue-Qin, Xie Er-Qing, Zhang Xiao-Qian. Time influence factor of vanadium oxide nanotube on Si substrate and initial gas sensing test. Acta Physica Sinica, 2012, 61(23): 236101. doi: 10.7498/aps.61.236101
    [10] Zhu Ming-Yuan, Liu Cong, Bo Wei-Qiang, Shu Jia-Wu, Hu Ye-Min, Jin Hong-Ming, Wang Shi-Wei, Li Ying. Synthesis of Cr-doped ZnO diluted magnetic semiconductor by hydrothermal method under pulsed magnetic field. Acta Physica Sinica, 2012, 61(7): 078106. doi: 10.7498/aps.61.078106
    [11] Wang Shi-Wei, Zhu Ming-Yuan, Zhong Min, Liu Cong, Li Ying, Hu Ye-Min, Jin Hong-Ming. Effects of pulsed magnetic field on Mn-doped ZnO diluted magnetic semiconductor prepared by hydrothermal method. Acta Physica Sinica, 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [12] Liu Jia, Xu Ling-Ling, Zhang Hai-Lin, Lü Wei, Zhu Lin, Gao Hong, Zhang Xi-Tian. One-step hydrothermal process for self-assembly of zinc oxide nanorods array on Al-doped ZnO nanoplate surface. Acta Physica Sinica, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [13] Zhou Chuan-Cang, Liu Fa-Min, Ding Peng, Zhong Wen-Wu, Cai Lu-Gang, Zeng Le-Gui. Hydrothermal synthesis, structure characterization and antiferromagnetic properties of thortveitite-type β-Mn2V2O7. Acta Physica Sinica, 2011, 60(7): 077504. doi: 10.7498/aps.60.077504
    [14] Sun Jia-Yue, Cao Chun, Du Hai-Yan. Hydrothermal controlled synthesis and luminescence properties of NaLa(MoO4)2∶Eu3+ microcrystals. Acta Physica Sinica, 2011, 60(12): 127801. doi: 10.7498/aps.60.127801
    [15] Huang Jin-Zhao, Li Shi-Shuai, Feng Xiu-Peng. Optoelectronic properties of ZnO nanorods fabricated by hydrothermal decomposition and its applications in organic/inorganic electroluminescence heterostructure. Acta Physica Sinica, 2010, 59(8): 5839-5844. doi: 10.7498/aps.59.5839
    [16] Cao Wang-He, Xin Mei. X-ray excited luminescence property of ZnS:Cu, Tm fine particles synthesized by hydrothermal method. Acta Physica Sinica, 2010, 59(8): 5833-5838. doi: 10.7498/aps.59.5833
    [17] Zhang Ai-Ping, Zhang Jin-Zhi. Hydrothermal synthesis of BiVO4 powder with different morphologies and structures. Acta Physica Sinica, 2009, 58(4): 2336-2344. doi: 10.7498/aps.58.2336
    [18] Sun Hui, Zhang Qi-Feng, Wu Jin-Lei. Ultraviolet light emitting diode based on ZnO nanowires. Acta Physica Sinica, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [19] Liu Hong-Xia, Zhou Sheng-Ming, Li Shu-Zhi, Hang Yin, Xu Jun, Gu Shu-Lin, Zhang Rong. Growth of ZnO microrod array films and their optical properties. Acta Physica Sinica, 2006, 55(3): 1398-1401. doi: 10.7498/aps.55.1398
    [20] Huang Hui, Luo Hong-Jie, Yao Xi. . Acta Physica Sinica, 2002, 51(8): 1881-1886. doi: 10.7498/aps.51.1881
Metrics
  • Abstract views:  6618
  • PDF Downloads:  277
  • Cited By: 0
Publishing process
  • Received Date:  25 July 2017
  • Accepted Date:  08 September 2017
  • Published Online:  05 December 2017

/

返回文章
返回