Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion

Xiao De-Long Dai Zi-Huan Sun Shun-Kai Ding Ning Zhang Yang Wu Ji-Ming Yin Li Shu Xiao-Jian

Citation:

Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion

Xiao De-Long, Dai Zi-Huan, Sun Shun-Kai, Ding Ning, Zhang Yang, Wu Ji-Ming, Yin Li, Shu Xiao-Jian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The dynamic hohlraum is a possible approach to driving inertial confinement fusion.Recently, dynamic hohlraum experiments on the primary test stand (PTS) facility were conducted, and preliminary results show that a dynamic hohlraum is formed, which can be used for driving target implosion.In this paper, the implosion dynamics of Z-pinch dynamic hohlraum driven target implosion with the drive current of PTS facility is numerically investigated.A physical model is established, in which a dynamic hohlraum is composed of a cylindrical tungsten wire-array and a CHO foam converter, and the target is composed of a high density CH ablator and low density DT fuel.The drive current is calculated by an equivalent circuit model, and the integrated simulations in (r, Z) plane by using a two-dimensional radiation magneto-hydrodynamics code are performed to describe the overall implosion dynamics.It is shown that the wire-array plasma is accelerated in the run-in stage, and in this stage the target keeps almost immobile.As the accelerated wire-array plasma impacts onto the low-density foam converter, a local region with high temperature and high pressure is generated near the W/CHO boundary due to energy thermalization, and this thermalization process will last several nanoseconds.This high temperature region will launch a strongly radiating shock.At the same time, high temperature radiation also appears and transfer to the target faster than the shock.When the high temperature radiation transfers to the surface of the target, the ablator is heated and the ablated plasma will expand outward, and a high-density flying layer will also be generated and propagate inward.After the high-density layer propagates to the ablator/fuel boundary, the DT fuel will be compressed to a high-density and high-temperature state finally.At the same time, the cylindrical shock, which is generated from the impact of the wire-array plasma on the foam converter, will gradually propagate to the ablator plasma.After it propagates over the converter/ablator boundary, it will be decelerated by the ablation pressure, which is beneficial to isolating the fuel compression from the direct cylindrical shock.It is shown that though the trajectories of the outer boundaries of the ablator at the equator and at the poles are completely different due to shock interaction at the equator, the fuel compression is nearly uniform due to radiation compression. It is shown that the asymmetry of fuel compression is mainly caused by the non-uniformity of the hohlraum radiation at the equator and at the poles.Generally, there are two differences between the radiation temperatures at the equator and at the poles, namely the time difference due to the finite velocity of radiation transfer, and the peak temperature difference due to energy coupling.If the target is small, the peak radiation temperature at the equator is almost the same as at the pole.The fuel at the equator is first compressed just because the radiation first transfers to the target equator.As the size of the target is increased, the difference in peak radiation temperature will be more serious, thus causing weaker fuel compression at the equator than at the poles.Certainly, if the target size is too large, the cylindrical shock will directly interact on the target at the equator, resulting in complete asymmetry at the equator with respect to the shock at the poles, which should be avoided.Furthermore, it is shown that as the target size is increased, the final neutron yield will first increase and then decrease, which means that there is a relatively optimal size selection for target implosion.
      Corresponding author: Ding Ning, ding_ning@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11105017, 11275030, 11775032) and the Defense Industrial Technology Development Program of China Academy of Engineering Physics (Grant No. B1520133015).
    [1]

    Cuneo M E, Herrmann M C, Sinars D B, et al. 2012 IEEE Trans. Plasma Sci. 40 3222

    [2]

    Deeney C, Douglas M R, Spielman R B, et al. 1998 Phys. Rev. Lett. 81 4883

    [3]

    Jones M C, Ampleford D J, Cuneo M E, et al. 2014 Rev. Sci. Instrum. 85 083501

    [4]

    Mehlhorn T A, Bailey J E, Bennett G, et al. 2003 Plasma Phys. Control. Fusion 45 A325

    [5]

    Vesey R A, Hermann M C, Lemke R W, et al. 2007 Phys. Plasmas 14 056302

    [6]

    Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003

    [7]

    Slutz S A, Bailey J E, Chandler G A, et al. 2003 Phys. Plasmas 10 1875

    [8]

    Slutz S A, Peterson K J, Vesey R A, et al. 2006 Phys. Plasmas 13 102701

    [9]

    Smirnov V P 1991 Plasma Phys. Control. Fusion 33 1697

    [10]

    Nash T J, Derzon M S, Allshouse G, et al. 1997 AIP Conference Proceedings 409 175

    [11]

    Nash T J, Derzon M S, Chandler G A, et al. 1999 Phys. Plasmas 6 2023

    [12]

    Bailey J E, Chandler G A, Slutz S A, et al. 2002 Phys. Rev. Lett. 89 095004

    [13]

    Bailey J E, Chandler G A, Mancini R C, et al. 2006 Phys. Plasmas 13 056301

    [14]

    Rochau G A, Bailey J E, Chandler G A, et al. 2007 Plasma Phys. Control. Fusion 49 B591

    [15]

    Stygar W A, Awe T J, Bailey J E, et al. 2015 Phys. Rev. ST Accel. Beams 18 110401

    [16]

    Grabovski E V 2013 IEEE Pulsed Power Plasma Science Conference San Francisco, USA, June 16-21, 2013

    [17]

    Chen F X, Feng J H, Li L B, et al. 2013 Acta Phys. Sin. 62 045204 (in Chinese)[陈法新, 冯璟华, 李林波, 等 2013 物理学报 62 045204]

    [18]

    Jiang S Q, Ning J M, Chen F X, et al. 2013 Acta Phys. Sin. 62 155203 (in Chinese)[蒋树庆, 甯家敏, 陈法新, 等 2013 物理学报 62 155203]

    [19]

    Xiao D L, Ding N, Ye F, et al. 2014 Phys. Plasmas 21 042704

    [20]

    Xu R K, Li Z H, Yang J L, et al. 2011 Acta Phys. Sin. 60 045208 (in Chinese)[徐荣昆, 李正宏, 杨建伦, 等 2011 物理学报 60 045208]

    [21]

    Deng J J, Xie W P, Feng S P, et al. 2016 Matter Radiat. Extremes 1 48

    [22]

    Xiao D L, Sun S K, Xue C, Zhang Y, Ding N 2015 Acta Phys. Sin. 64 235203 (in Chinese)[肖德龙, 孙顺凯, 薛创, 张扬, 丁宁 2015 物理学报 64 235203]

    [23]

    Meng S J, Hu Q Y, Ning J M, et al. 2017 Phys. Plasmas 24 014505

    [24]

    Xiao D L, Ye F, Meng S J, et al. 2017 Phys. Plasmas 24 092701

    [25]

    Sanford T W L, Allshouse G O, Marder B M, et al. 1996 Phys. Rev. Lett. 77 5063

    [26]

    Lemke R W, Bailey J E, Chandler G A, et al. 2005 Phys. Plasmas 12 012703

    [27]

    Rochau G A, Bailey J E, Maron J E, et al. 2008 Phys. Rev. Lett. 100 125004

    [28]

    Ding N, Wu J M, Dai Z H, et al. 2010 Acta Phys. Sin. 59 8707 (in Chinese)[丁宁, 邬吉明, 戴自换, 等 2010 物理学报 59 8707]

    [29]

    Xiao D L, Sun S K, Zhao Y K, et al. 2015 Phys. Plasmas 22 052709

    [30]

    Ding N, Zhang Y, Xiao D L, et al. 2016 Matter Radiat. Extremes 1 135

    [31]

    Xue C, Ding N, Xiao D L, et al. 2016 High Power Laser and Particle Beams 28 125004 (in Chinese)[薛创, 丁宁, 肖德龙, 等 2016 强激光与离子束 28 125004]

  • [1]

    Cuneo M E, Herrmann M C, Sinars D B, et al. 2012 IEEE Trans. Plasma Sci. 40 3222

    [2]

    Deeney C, Douglas M R, Spielman R B, et al. 1998 Phys. Rev. Lett. 81 4883

    [3]

    Jones M C, Ampleford D J, Cuneo M E, et al. 2014 Rev. Sci. Instrum. 85 083501

    [4]

    Mehlhorn T A, Bailey J E, Bennett G, et al. 2003 Plasma Phys. Control. Fusion 45 A325

    [5]

    Vesey R A, Hermann M C, Lemke R W, et al. 2007 Phys. Plasmas 14 056302

    [6]

    Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003

    [7]

    Slutz S A, Bailey J E, Chandler G A, et al. 2003 Phys. Plasmas 10 1875

    [8]

    Slutz S A, Peterson K J, Vesey R A, et al. 2006 Phys. Plasmas 13 102701

    [9]

    Smirnov V P 1991 Plasma Phys. Control. Fusion 33 1697

    [10]

    Nash T J, Derzon M S, Allshouse G, et al. 1997 AIP Conference Proceedings 409 175

    [11]

    Nash T J, Derzon M S, Chandler G A, et al. 1999 Phys. Plasmas 6 2023

    [12]

    Bailey J E, Chandler G A, Slutz S A, et al. 2002 Phys. Rev. Lett. 89 095004

    [13]

    Bailey J E, Chandler G A, Mancini R C, et al. 2006 Phys. Plasmas 13 056301

    [14]

    Rochau G A, Bailey J E, Chandler G A, et al. 2007 Plasma Phys. Control. Fusion 49 B591

    [15]

    Stygar W A, Awe T J, Bailey J E, et al. 2015 Phys. Rev. ST Accel. Beams 18 110401

    [16]

    Grabovski E V 2013 IEEE Pulsed Power Plasma Science Conference San Francisco, USA, June 16-21, 2013

    [17]

    Chen F X, Feng J H, Li L B, et al. 2013 Acta Phys. Sin. 62 045204 (in Chinese)[陈法新, 冯璟华, 李林波, 等 2013 物理学报 62 045204]

    [18]

    Jiang S Q, Ning J M, Chen F X, et al. 2013 Acta Phys. Sin. 62 155203 (in Chinese)[蒋树庆, 甯家敏, 陈法新, 等 2013 物理学报 62 155203]

    [19]

    Xiao D L, Ding N, Ye F, et al. 2014 Phys. Plasmas 21 042704

    [20]

    Xu R K, Li Z H, Yang J L, et al. 2011 Acta Phys. Sin. 60 045208 (in Chinese)[徐荣昆, 李正宏, 杨建伦, 等 2011 物理学报 60 045208]

    [21]

    Deng J J, Xie W P, Feng S P, et al. 2016 Matter Radiat. Extremes 1 48

    [22]

    Xiao D L, Sun S K, Xue C, Zhang Y, Ding N 2015 Acta Phys. Sin. 64 235203 (in Chinese)[肖德龙, 孙顺凯, 薛创, 张扬, 丁宁 2015 物理学报 64 235203]

    [23]

    Meng S J, Hu Q Y, Ning J M, et al. 2017 Phys. Plasmas 24 014505

    [24]

    Xiao D L, Ye F, Meng S J, et al. 2017 Phys. Plasmas 24 092701

    [25]

    Sanford T W L, Allshouse G O, Marder B M, et al. 1996 Phys. Rev. Lett. 77 5063

    [26]

    Lemke R W, Bailey J E, Chandler G A, et al. 2005 Phys. Plasmas 12 012703

    [27]

    Rochau G A, Bailey J E, Maron J E, et al. 2008 Phys. Rev. Lett. 100 125004

    [28]

    Ding N, Wu J M, Dai Z H, et al. 2010 Acta Phys. Sin. 59 8707 (in Chinese)[丁宁, 邬吉明, 戴自换, 等 2010 物理学报 59 8707]

    [29]

    Xiao D L, Sun S K, Zhao Y K, et al. 2015 Phys. Plasmas 22 052709

    [30]

    Ding N, Zhang Y, Xiao D L, et al. 2016 Matter Radiat. Extremes 1 135

    [31]

    Xue C, Ding N, Xiao D L, et al. 2016 High Power Laser and Particle Beams 28 125004 (in Chinese)[薛创, 丁宁, 肖德龙, 等 2016 强激光与离子束 28 125004]

  • [1] Zhang Yang, Sun Shun-Kai, Ding Ning, Li Zheng-Hong, Shu Xiao-Jian. Basic dynamic and scale study of quasi-spherical Z-pinch implosion. Acta Physica Sinica, 2017, 66(10): 105203. doi: 10.7498/aps.66.105203
    [2] Wu Fu-Yuan, Chu Yan-Yun, Ye Fan, Li Zheng-Hong, Yang Jian-Lun, Rafael Ramis, Wang Zhen, Qi Jian-Min, Zhou Lin, Liang Chuan. One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI. Acta Physica Sinica, 2017, 66(21): 215201. doi: 10.7498/aps.66.215201
    [3] Chen Zhong-Wang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z. Acta Physica Sinica, 2017, 66(12): 125202. doi: 10.7498/aps.66.125202
    [4] Meng Shi-Jian, Huang Zhan-Chang, Ning Jia-Min, Hu Qing-Yuan, Ye Fan, Qin Yi, Xu Ze-Ping, Xu Rong-Kun. Shock X-ray emission image measurement in Z-pinch dynamic hohlraum. Acta Physica Sinica, 2016, 65(7): 075201. doi: 10.7498/aps.65.075201
    [5] Xiao De-Long, Sun Shun-Kai, Xue Chuang, Zhang Yang, Ding Ning. Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation. Acta Physica Sinica, 2015, 64(23): 235203. doi: 10.7498/aps.64.235203
    [6] Xue Chuang, Ding Ning, Sun Shun-Kai, Xiao De-Long, Zhang Yang, Huang Jun, Ning Cheng, Shu Xiao-Jian. Full circuit model for coupling pulsed power driver with Z-pinch load. Acta Physica Sinica, 2014, 63(12): 125207. doi: 10.7498/aps.63.125207
    [7] Ning Cheng, Feng Zhi-Xing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [8] Dan Jia-Kun, Ren Xiao-Dong, Huang Xian-Bin, Zhang Si-Qun, Zhou Shao-Tong, Duan Shu-Chao, Ouyang Kai, Cai Hong-Chun, Wei Bing, Ji Ce, He An, Xia Ming-He, Feng Shu-Ping, Wang Meng, Xie Wei-Ping. Electromagnetic pulse emission produced by Z pinch implosions. Acta Physica Sinica, 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [9] Chen Fa-Xin, Feng Jing-Hua, Li Lin-Bo, Yang Jian-Lun, Zhou Lin, Xu Rong-Kun, Xu Ze-Ping. Study of Z-pinch dynamic hohlraum shadowgraphy. Acta Physica Sinica, 2013, 62(4): 045204. doi: 10.7498/aps.62.045204
    [10] Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo. Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [11] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [12] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [13] Sheng Liang, Qiu Meng-Tong, Hei Dong-Wei, Qiu Ai-Ci, Cong Pei-Tian, Wang Liang-Ping, Wei Fu-Li. Research of implosion dynamics for wire array Z pinch. Acta Physica Sinica, 2011, 60(5): 055205. doi: 10.7498/aps.60.055205
    [14] Sheng Liang, Wang Liang-Ping, Li Yang, Peng Bo-Dong, Zhang Mei, Wu Jian, Wang Pei-Wei, Wei Fu-Li, Yuan Yuan. One-dimensional imaging diagnostics of imploding dynamics for planar wire array Z pinch. Acta Physica Sinica, 2011, 60(10): 105205. doi: 10.7498/aps.60.105205
    [15] Zhang Fa-Qiang, Wang Zhen, Xu Ze-Ping, Jiang Shi-Lun, V. P. Smirnov, Ning Jia-Min, Li Lin-Bo, Zhou Xiu-Wen, E. V. Grabovsky, G. M. Oleynic, V. V. Alexandrov, Ding Ning, Xu Rong-Kun, Li Zheng-Hong, Yang Jian-Lun. New results of Sino-Russian joint Z-pinch experiments. Acta Physica Sinica, 2011, 60(4): 045208. doi: 10.7498/aps.60.045208
    [16] Xia Guang-Xin, Zhang Fa-Qiang, Xu Ze-Ping, Xu Rong-Kun, Chen Jin-Chuan, Ning Jia-Min. Radiation characteristics of single wire array Z-pinch implosion. Acta Physica Sinica, 2010, 59(1): 97-102. doi: 10.7498/aps.59.97
    [17] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [18] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [19] Wu Gang, Qiu Ai-Ci, Lü Min, Kuai Bin, Wang Liang-Ping, Cong Pei-Tian, Qiu Meng-Tong, Lei Tian-Shi, Sun Tie-Ping, Guo Ning, Han Juan-Juan, Zhang Xin-Jun, Huang Tao, Zhang Guo-Wei, Qiao Kai-Lai. Experimental study on K-shell radiation production of aluminum wire array Z-pinch at Qiangguang-I facility. Acta Physica Sinica, 2009, 58(7): 4779-4786. doi: 10.7498/aps.58.4779
    [20] Huang Xian-Bin, Yang Li-Bing, Gu Yuan-Chao, Deng Jian-Jun, Zhou Rong-Guo, Zou Jie, Zhou Shao-Tong, Zhang Si-Qun, Chen Guang-Hua, Chang Li-Hua, Li Feng-Ping, Ouyang Kai, Li Jun, Yang Liang, Wang Xiong. Experimental studies of the argon-puff Z-pinch implosion process. Acta Physica Sinica, 2006, 55(4): 1900-1906. doi: 10.7498/aps.55.1900
Metrics
  • Abstract views:  5414
  • PDF Downloads:  154
  • Cited By: 0
Publishing process
  • Received Date:  17 July 2017
  • Accepted Date:  17 September 2017
  • Published Online:  20 January 2019

/

返回文章
返回