Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coherent anti-Stokes Raman scattering spectrum of vibrational properties of liquid nitromethane molecules

Peng Ya-Jing Sun Shuang Song Yun-Fei Yang Yan-Qiang

Citation:

Coherent anti-Stokes Raman scattering spectrum of vibrational properties of liquid nitromethane molecules

Peng Ya-Jing, Sun Shuang, Song Yun-Fei, Yang Yan-Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The initial decomposition micro-mechanism of energetic materials has attracted much attention because it is a critical factor for the safe use of energetic materials. The thermally triggered chemical reactions are usually related to the vibrational properties of molecules. A time-resolved coherent anti-Stokes Raman scattering (CARS) spectrum system is constructed to study the molecular coherent vibrational dynamics of nitromethane at a microscopic level for clarifying the relation of molecular vibration to initial chemical reaction. In this experiment, the ultra-continuous white light is used as Stokes light, and the CARS spectra of different vibrational modes can be obtained by adjusting the time delay of the Stokes light. The vibrational dephasing time of different chemical bonds in nitromethane is provided by fitting the vibrational relaxation curves. The dephasing time of the CH stretching vibration located at 3000 cm-1 is shown to be 0.18 ps, which is far less than the dephasing time 6.2 ps of the CN stretching vibration located at 917 cm-1. The vibrational dephasing time is closely related to thermal collision for liquid nitromethane system without intermolecular hydrogen bond, that is, the scattering of thermal phonons causes the dephasing of coherent vibration. Therefore, the stretching vibration of the CH bond is more easily affected by the thermal phonon than the stretching vibration of the CN bond. The CH bond of nitromethane molecule is expected to be excited first, causing an initial chemical reaction under thermal loading.
      Corresponding author: Song Yun-Fei, songyunfei@caep.cn;yqyang@hit.edu.cn ; Yang Yan-Qiang, songyunfei@caep.cn;yqyang@hit.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 2015020248) and the Fund of Institute of Fluid Physics of China Academy of Engineering Physics (Grant No. HX2016140).
    [1]

    Peng Y J, Ye Y Q 2015 Chemistry 78 693 (in Chinese)[彭亚晶,叶玉清 2015 化学通报 78 693]

    [2]

    Conner R W, Dlott D D 2012 J. Phys. Chem. C 116 14737

    [3]

    Rossi C, Zhang K L, Estve D, Alphonse P 2007 J. Microelectromech. Syst. 16 919

    [4]

    Peng Y J, Song Y F, Cai K D 2015 Nanoaluminum Composite Energetic Materials (Beijing: Chemical Industry Press) p46 (in Chinese)[彭亚晶, 宋云飞, 蔡克迪 2015 纳米铝复合含能材料 (北京: 化学工业出版社) 第46页]

    [5]

    Liu Y, Jiang Y T, Zhang T L, Feng C G, Yang L 2015 J. Therm. Anal. Calorim. 119 659

    [6]

    Pagoria P F, Lee G S, Mitchell A R, Schmidt R D 2002 Thermochim. Acta 384 187

    [7]

    Sikder A, Sikder N 2004 J. Hazard. Mater. 112 1

    [8]

    Badgujar D, Talawar M, Asthana S, Mahulikar P 2008 J. Hazard. Mater. 151 289

    [9]

    Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B 2009 J. Hazard. Mater. 161 589

    [10]

    Namboodiri V V, Ahmed M, Podagatlapalli G K, Singh A K 2015 Proc. Indian Natl. Sci. Acad. 81 525

    [11]

    Wu H L, Song Y F, Yu G Y, Chen X L, Yang Y Q 2016 J. Raman Spectrosc. 47 1213

    [12]

    Duan X H, Li W P, Pei C H, Zhou X Q 2013 J. Mol. Model. 19 3893

    [13]

    Shan T, Thompson A P 2014 J. Phys. Conf. Ser. 500 172009

    [14]

    Chu G B, Shui M, Song Y F, Xu T, Gu Y Q, Yang Y Q 2015 J. Chem. Phys. 28 49

    [15]

    Cianetti S, Negrerie M, Vos M H, Martin J L, Kruglik S G 2004 J. Am. Chem. Soc. 126 13932

    [16]

    Chan P Y, Kwok W M, Lam S K, Phillips D L 2005 J. Am. Chem. Soc. 127 8246

    [17]

    Winey J M, Gupta Y M 1997 J. Phys. Chem. B 101 10733

    [18]

    Winey J M, Duvall G E, Knudson M D, Gupta Y M 2000 J. Chem. Phys. 113 7492

    [19]

    Cataliotti R S, Foggi P, Giorgini M G, Mariani L, Morresi A, Paliani G 1993 J. Chem. Phys. 98 4372

    [20]

    Hill J R, Moore D S, Schmidt S C, Storm C B 1991 J. Chem. Phys. 95 3039

    [21]

    Shkurinov A, Jonusauskast G, Rulliere C 1994 J. Raman Spectrosc. 25 359

    [22]

    Dogariu A, Pidwerbetsky A 2012 Lasers, Sources, and Related Photonic Devices, OSA Technical Digest pLM1B.2

    [23]

    Guray T, Franken J, Hambir S A, Hare D E, Dlott D D 1997 Phys. Rev. Letts. 78 4585

    [24]

    Yang Y, Hambir A A, Dlott D D 2002 Shock Waves 12 129

    [25]

    Yang Y Q, Sun Z Y, Wang S F, Dlott D D 2003 J. Phys. Chem. B 107 4485

    [26]

    Merrick J P, Moran D, Radom L 2007 J. Phys. Chem. A 111 11683

    [27]

    Pangilinan G I, Gupta Y M 1994 J. Phys. Chem. 98 4522

    [28]

    Megyes T, Blint S, Grsz T, Radnai T, Bak I 2007 J. Chem. Phys. 126 164507

  • [1]

    Peng Y J, Ye Y Q 2015 Chemistry 78 693 (in Chinese)[彭亚晶,叶玉清 2015 化学通报 78 693]

    [2]

    Conner R W, Dlott D D 2012 J. Phys. Chem. C 116 14737

    [3]

    Rossi C, Zhang K L, Estve D, Alphonse P 2007 J. Microelectromech. Syst. 16 919

    [4]

    Peng Y J, Song Y F, Cai K D 2015 Nanoaluminum Composite Energetic Materials (Beijing: Chemical Industry Press) p46 (in Chinese)[彭亚晶, 宋云飞, 蔡克迪 2015 纳米铝复合含能材料 (北京: 化学工业出版社) 第46页]

    [5]

    Liu Y, Jiang Y T, Zhang T L, Feng C G, Yang L 2015 J. Therm. Anal. Calorim. 119 659

    [6]

    Pagoria P F, Lee G S, Mitchell A R, Schmidt R D 2002 Thermochim. Acta 384 187

    [7]

    Sikder A, Sikder N 2004 J. Hazard. Mater. 112 1

    [8]

    Badgujar D, Talawar M, Asthana S, Mahulikar P 2008 J. Hazard. Mater. 151 289

    [9]

    Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B 2009 J. Hazard. Mater. 161 589

    [10]

    Namboodiri V V, Ahmed M, Podagatlapalli G K, Singh A K 2015 Proc. Indian Natl. Sci. Acad. 81 525

    [11]

    Wu H L, Song Y F, Yu G Y, Chen X L, Yang Y Q 2016 J. Raman Spectrosc. 47 1213

    [12]

    Duan X H, Li W P, Pei C H, Zhou X Q 2013 J. Mol. Model. 19 3893

    [13]

    Shan T, Thompson A P 2014 J. Phys. Conf. Ser. 500 172009

    [14]

    Chu G B, Shui M, Song Y F, Xu T, Gu Y Q, Yang Y Q 2015 J. Chem. Phys. 28 49

    [15]

    Cianetti S, Negrerie M, Vos M H, Martin J L, Kruglik S G 2004 J. Am. Chem. Soc. 126 13932

    [16]

    Chan P Y, Kwok W M, Lam S K, Phillips D L 2005 J. Am. Chem. Soc. 127 8246

    [17]

    Winey J M, Gupta Y M 1997 J. Phys. Chem. B 101 10733

    [18]

    Winey J M, Duvall G E, Knudson M D, Gupta Y M 2000 J. Chem. Phys. 113 7492

    [19]

    Cataliotti R S, Foggi P, Giorgini M G, Mariani L, Morresi A, Paliani G 1993 J. Chem. Phys. 98 4372

    [20]

    Hill J R, Moore D S, Schmidt S C, Storm C B 1991 J. Chem. Phys. 95 3039

    [21]

    Shkurinov A, Jonusauskast G, Rulliere C 1994 J. Raman Spectrosc. 25 359

    [22]

    Dogariu A, Pidwerbetsky A 2012 Lasers, Sources, and Related Photonic Devices, OSA Technical Digest pLM1B.2

    [23]

    Guray T, Franken J, Hambir S A, Hare D E, Dlott D D 1997 Phys. Rev. Letts. 78 4585

    [24]

    Yang Y, Hambir A A, Dlott D D 2002 Shock Waves 12 129

    [25]

    Yang Y Q, Sun Z Y, Wang S F, Dlott D D 2003 J. Phys. Chem. B 107 4485

    [26]

    Merrick J P, Moran D, Radom L 2007 J. Phys. Chem. A 111 11683

    [27]

    Pangilinan G I, Gupta Y M 1994 J. Phys. Chem. 98 4522

    [28]

    Megyes T, Blint S, Grsz T, Radnai T, Bak I 2007 J. Chem. Phys. 126 164507

Metrics
  • Abstract views:  5492
  • PDF Downloads:  137
  • Cited By: 0
Publishing process
  • Received Date:  14 August 2017
  • Accepted Date:  28 September 2017
  • Published Online:  20 January 2019

/

返回文章
返回