Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Flexible solid-state supercapacitors based on shrunk high-density aligned carbon nanotube arrays

Zhu Qi Yuan Xie-Tao Zhu Yi-Hao Zhang Xiao-Hua Yang Zhao-Hui

Citation:

Flexible solid-state supercapacitors based on shrunk high-density aligned carbon nanotube arrays

Zhu Qi, Yuan Xie-Tao, Zhu Yi-Hao, Zhang Xiao-Hua, Yang Zhao-Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Nowadays flexible solid-state supercapacitors (FSCs) have received more and more attention than conventional capacitors due to the good operability and flexible fabrication process as well as high specific/volumetric energy density. In general, carbon based materials including amorphous carbon, carbon nanotube, grapheme, etc. can be used to fabricate electrolytic double-layer capacitance (EDLC)-type FSCs due to its extraordinary cyclic stability at high current density. Aligned carbon nanotube (ACNT) arrays are one of the ideal electrode candidates for energy storage due to their good capacity, highly efficient charge transfer rate, excellent rate performance and long cycle life compared with those of other carbon-based materials carbon nanotubes. However, the low density and the weak interaction between the carbon tubes cause the CNT arrays to tend to easily collapse during processing and transferring. Thus pure carbon nanotube arrays are unable to be directly used to assemble flexible electronic devices. In this paper, we use ethyl alcohol to shrink the CNT array to increase the density and mechanical strength. At the same time we embed the conductive polyvingle alcohol (PVA) gel into the carbon nanotube array to fabricate a flexible solid supercapacitor. Hydrogel-based solid electrolytes have been long considered to be used to prepare FSCs, because this method possesses obvious advantages including low cost, good environmental compatibility and simple manufacturing process. The ACNT/PVA complex can maintain good mechanical stability and flexibility during its folding and bending, and can also keep the high orientation of carbon nanotubes. The maximum capacitance of the hybrid flexible device can reach 458 mFcm-3 at a current density of 10 mAcm-3, which is much higher than the capacitance reported in the literature. After 5000 charging-discharging cycles, a capacity still keeps nearly 100%. The maximum energy density of CNTs/gel composite device can reach 0.04 mWhcm-3 with an average power density of 3.7 mWcm-3. The capacitance can be further increased to 618 mFcm-3 by a simple in-situ electrochemical oxidation treatment. The energy density can be further increased to 0.07 mWhcm-3 by the electro-oxidation treatment. The electrochemical performance of the device is far superior to that of EDLC-typed FSC reported in the literature. Additionally the equivalent series resistance (RESR) of the devices decreases from 120 to 30 and also the charge transfer resistance declines from 90 to 10 . This is mainly due to the effect of pseudo capacitance and electro-wetting effect caused by electro-oxidation. This easy-to-assemble hybrid devices thus potentially pave the way for manufacturing wearable devices and implantable medical devices.
      Corresponding author: Yang Zhao-Hui, yangzhaohui@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21204059), the Specially-Appointed Professor Plan in Jiangsu Province, China, and the State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, China (Grant No. M2-201501).
    [1]

    Holdren J P 2007 Science 315 737

    [2]

    Arunachalam V S, Fleischer E L 2008 MRS Bull. 33 261

    [3]

    Wang K, Zhang X, Li C, Sun X, Meng Q, Ma Y, Wei Z 2015 Adv. Mater. 27 7451

    [4]

    Li Y, Xu J, Feng T, Yao Q, Xie J, Xia H 2017 Adv. Functional Mater. 27 1606728

    [5]

    Frackowiak E, Khomenko V, Jurewicz K, Lota K, Bguin F 2006 J. Power Sources 153 413

    [6]

    Zhai T, Wan L, Sun S, Chen Q, Sun J, Xia Q, Xia H 2017 Adv. Mater. 29 1604167

    [7]

    Lu X, Yu M, Wang G, Tong Y, Li Y 2014 Energy Environ. Sci. 7 2160

    [8]

    He Y, Chen W, Gao C, Zhou J, Li X, Xie E 2013 Nanoscale 5 8799

    [9]

    Yang P, Mai W 2014 Nano Energy 8 274

    [10]

    Liu L, Niu Z, Chen J 2016 Chem. Soc. Rev. 45 4340

    [11]

    Simon P, Gogotsi Y 2013 Accounts of Chemical Research 46 1094

    [12]

    Fic K, Lota G, Meller M, Frackowiak E 2012 Energy Environ. Sci. 5 5842

    [13]

    Lin Z, Zeng Z, Gui X, Tang Z, Zou M, Cao A 2016 Adv. Energy Mater. 6 1600554

    [14]

    Jiang H, Lee P S, Li C 2013 Energy Environ. Sci. 6 41

    [15]

    Zhang H, Cao G, Yang Y 2009 Energy Environ. Sci. 2 932

    [16]

    Talapatra S, Kar S, Pal S K, Vajtai R, Ci L, Victor P, Shaijumon M M, Kaur S, Nalamasu O, Ajayan P M 2006 Nature Nanotechnol. 1 112

    [17]

    Pushparaj V L, Shaijumon M M, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt R J, Nalamasu O, Ajayan P M 2007 Proc. Nat. Acad. Sci. USA 104 13574

    [18]

    Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S 2006 Nat. Mater. 5 987

    [19]

    Hata K, Futaba D N, Mizuno K, Namai T, Yumura M, Iijima S 2004 Science 306 1362

    [20]

    Liu Z, Liao G, Li S, Pan Y, Wang X, Weng Y, Zhang X, Yang Z 2013 J. Mater. Chem. A 1 13321

    [21]

    Hsia B, Marschewski J, Wang S, In J B, Carraro C, Poulikakos D, Grigoropoulos C P, Maboudian R 2014 Nanotechnology 25 055401

    [22]

    Kang Y J, Chung H, Han C H, Kim W 2012 Nanotechnology 23 065401

    [23]

    Kaempgen M, Chan C K, Ma J, Cui Y and Gruner G 2009 Nano Lett. 9 1872

    [24]

    El-Kady M F, Strong V, Dubin S, Kaner R B 2012 Science 335 1326

  • [1]

    Holdren J P 2007 Science 315 737

    [2]

    Arunachalam V S, Fleischer E L 2008 MRS Bull. 33 261

    [3]

    Wang K, Zhang X, Li C, Sun X, Meng Q, Ma Y, Wei Z 2015 Adv. Mater. 27 7451

    [4]

    Li Y, Xu J, Feng T, Yao Q, Xie J, Xia H 2017 Adv. Functional Mater. 27 1606728

    [5]

    Frackowiak E, Khomenko V, Jurewicz K, Lota K, Bguin F 2006 J. Power Sources 153 413

    [6]

    Zhai T, Wan L, Sun S, Chen Q, Sun J, Xia Q, Xia H 2017 Adv. Mater. 29 1604167

    [7]

    Lu X, Yu M, Wang G, Tong Y, Li Y 2014 Energy Environ. Sci. 7 2160

    [8]

    He Y, Chen W, Gao C, Zhou J, Li X, Xie E 2013 Nanoscale 5 8799

    [9]

    Yang P, Mai W 2014 Nano Energy 8 274

    [10]

    Liu L, Niu Z, Chen J 2016 Chem. Soc. Rev. 45 4340

    [11]

    Simon P, Gogotsi Y 2013 Accounts of Chemical Research 46 1094

    [12]

    Fic K, Lota G, Meller M, Frackowiak E 2012 Energy Environ. Sci. 5 5842

    [13]

    Lin Z, Zeng Z, Gui X, Tang Z, Zou M, Cao A 2016 Adv. Energy Mater. 6 1600554

    [14]

    Jiang H, Lee P S, Li C 2013 Energy Environ. Sci. 6 41

    [15]

    Zhang H, Cao G, Yang Y 2009 Energy Environ. Sci. 2 932

    [16]

    Talapatra S, Kar S, Pal S K, Vajtai R, Ci L, Victor P, Shaijumon M M, Kaur S, Nalamasu O, Ajayan P M 2006 Nature Nanotechnol. 1 112

    [17]

    Pushparaj V L, Shaijumon M M, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt R J, Nalamasu O, Ajayan P M 2007 Proc. Nat. Acad. Sci. USA 104 13574

    [18]

    Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S 2006 Nat. Mater. 5 987

    [19]

    Hata K, Futaba D N, Mizuno K, Namai T, Yumura M, Iijima S 2004 Science 306 1362

    [20]

    Liu Z, Liao G, Li S, Pan Y, Wang X, Weng Y, Zhang X, Yang Z 2013 J. Mater. Chem. A 1 13321

    [21]

    Hsia B, Marschewski J, Wang S, In J B, Carraro C, Poulikakos D, Grigoropoulos C P, Maboudian R 2014 Nanotechnology 25 055401

    [22]

    Kang Y J, Chung H, Han C H, Kim W 2012 Nanotechnology 23 065401

    [23]

    Kaempgen M, Chan C K, Ma J, Cui Y and Gruner G 2009 Nano Lett. 9 1872

    [24]

    El-Kady M F, Strong V, Dubin S, Kaner R B 2012 Science 335 1326

  • [1] Chen Hui-Yan, Li Luo-Fei, Wang Wei, Cao Yi, Lei Hai. Regulation of mechanical force on cardiomyocytes beating. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240095
    [2] Zhang Wen-Bo, Liu Shao-Cheng, Liao Liang, Wei Wen-Yin, Li Le-Tian, Wang Liang, Yan Ning, Qian Jin-Ping, Zang Qing. Development of charge-discharge circuitry based on supercapacitor and its application to limiter probe diagnostics in EAST. Acta Physica Sinica, 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [3] Sun Zhi-Wei, He Yan, Tang Yuan-Zheng. Water distribution in confined space of single-wall carbon nanotube. Acta Physica Sinica, 2021, 70(6): 060201. doi: 10.7498/aps.70.20201523
    [4] Chen Kang, Shen Yu-Nian. Nonlinear frictional contact behavior of porous polymer hydrogels for soft robot. Acta Physica Sinica, 2021, 70(12): 120201. doi: 10.7498/aps.70.20202134
    [5] Zhang Xin, Chen Xing, Bai Tian, You Xing-Yan, Zhao Xin, Liu Xiang-Yang, Ye Mei-Dan. Recent advances in flexible fiber-shaped supercapacitors. Acta Physica Sinica, 2020, 69(17): 178201. doi: 10.7498/aps.69.20200159
    [6] Shao Guang-Wei, Guo Shan-Shan, Yu Rui, Chen Nan-Liang, Ye Mei-Dan, Liu Xiang-Yang. Stretchable supercapacitors: Electrodes, electrolytes, and devices. Acta Physica Sinica, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [7] Ye An-Na, Zhang Xiao-Hua, Yang Zhao-Hui. Redox-enhanced solid-state supercapacitor based on hydroquinone-containing gel electrolyte/ carbon nanotube arrays. Acta Physica Sinica, 2020, 69(12): 126101. doi: 10.7498/aps.69.20200204
    [8] Wu Meng-Dan, Zhou Sheng-Lin, Ye An-Na, Wang Min, Zhang Xiao-Hua, Yang Zhao-Hui. High-voltage flexible solid state supercapacitor based on neutral hydrogel/carbon nanotube arrays. Acta Physica Sinica, 2019, 68(10): 108201. doi: 10.7498/aps.68.20182288
    [9] Yang Xiu-Tao, Liang Zhong-Guan, Yuan Yu-Jia, Yang Jun-Liang, Xia Hui. Preparation and electrochemical performance of porous carbon nanosphere. Acta Physica Sinica, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [10] Zhang Cheng, Deng Ming-Sen, Cai Shao-Hong. Co3O4 mesoporous nanostructure supported by Ni foam as high-performance supercapacitor electrodes. Acta Physica Sinica, 2017, 66(12): 128201. doi: 10.7498/aps.66.128201
    [11] Guo Li-Qiang, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning. Dual in-plane-gate coupled IZO thin film transistor based on capacitive coupling effect in KH550-GO solid electrolyte. Acta Physica Sinica, 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [12] Li Yang, Song Yong-Shun, Li Ming, Zhou Xin. Simulation studies on the diffusion of water solitons in carbon nanotube. Acta Physica Sinica, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [13] Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei, Cheng Cheng-Ping, Luo Cheng-Lin. Water permeability in carbon nanotube arrays. Acta Physica Sinica, 2015, 64(23): 230201. doi: 10.7498/aps.64.230201
    [14] Yan Hong-Dan, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. High-density array of Au nanowires coupled by plasmon modes. Acta Physica Sinica, 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [15] Quan Jun, Liu Yi-Xing, Yu Ya-Bin. Dynamic response of the coherent parallel-plate capacitor to the external field. Acta Physica Sinica, 2010, 59(2): 1237-1242. doi: 10.7498/aps.59.1237
    [16] Chen Guo-Dong, Wang Liu-Ding, Zhang Jiao-Qiang, Cao De-Cai, An Bo, Ding Fu-Cai, Liang Jin-Kui. First-principles study of electron field emission from the carbon nanotube with B doping and H2O adsorption. Acta Physica Sinica, 2008, 57(11): 7164-7167. doi: 10.7498/aps.57.7164
    [17] Chen Xue-Feng, Li Hua-Mei, Li Dong-Jie, Cao Fei, Dong Xian-Lin. Study on slim-loop ferroelectric ceramics for high-power pulse capacitors. Acta Physica Sinica, 2008, 57(11): 7298-7304. doi: 10.7498/aps.57.7298
    [18] Zhang Chun-Mei, Bian Xin-Chao, Chen Qiang, Fu Ya-Bo, Zhang Yue-Fei. Effect and mechanism of water on carbon nanotubes growth. Acta Physica Sinica, 2008, 57(7): 4602-4606. doi: 10.7498/aps.57.4602
    [19] Ouyang Yu, Fang Yan. The effects of H2O on the synthesis of SWCNTs by decomposing CH4 in Ar at 800℃. Acta Physica Sinica, 2005, 54(2): 578-581. doi: 10.7498/aps.54.578
    [20] Zhang Zhong-hua. PERTURBATION METHOD FOR VARIABLE BOUNDARY PROBLEMS AND APPLICATION TO THE EVALUATION OF ERRORS IN PRECISE CAPACITORS. Acta Physica Sinica, 1979, 28(4): 563-570. doi: 10.7498/aps.28.563
Metrics
  • Abstract views:  5029
  • PDF Downloads:  316
  • Cited By: 0
Publishing process
  • Received Date:  17 August 2017
  • Accepted Date:  20 October 2017
  • Published Online:  20 January 2019

/

返回文章
返回