Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Highly precise and real-time measurements of 13CO2/12CO2 isotopic ratio in breath using a 2 μm diode laser

Sun Ming-Guo Ma Hong-Liang Liu Qiang Cao Zhen-Song Wang Gui-Shi Liu Kun Huang Yin-Bo Gao Xiao-Ming Rao Rui-Zhong

Citation:

Highly precise and real-time measurements of 13CO2/12CO2 isotopic ratio in breath using a 2 μm diode laser

Sun Ming-Guo, Ma Hong-Liang, Liu Qiang, Cao Zhen-Song, Wang Gui-Shi, Liu Kun, Huang Yin-Bo, Gao Xiao-Ming, Rao Rui-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Real-time breath gas analysis with high accuracy, precision and time resolution, as a promising, non-invasive, fast and reliable tool, is important in medical diagnostics. Especially stable isotopologues of carbon dioxide is applied to multiple research areas including the diagnosis of gastrointestinal diseases. Helicobacter pylori (H. pylori) is one of the most frequent bacterial infectious diseases in human beings and is now recognized as one of the key risk factors for chronic gastritis, peptic ulcers, stomach cancer and lymphoma. In contrast to traditional invasive tests, the most reliable non-invasive method in the diagnosis of the H. pylori infection is considered to be 13C-urea breath test which is implemented by measuring the 13CO2/12CO2 isotope ratio in human breath. Tunable diode laser absorption spectroscopy (TDLAS) has the advantages of fast response, low drift, good gas selectivity and high detection sensitivity, and it is very convenient to develop a high precision, real-time and online measurement system. A precision laser spectrometer for the measurement of CO2 isotope abundance in human breath (with CO2 concentration of 4%-5%) or high concentration gas is designed and evaluated based on TDLAS technology. The spectrometer contains a novel compact dense-pattern multipass cell with a small volume of 280 cm3 and an effective optical path length of 26. 4 m. The cell is in conjunction with a fiber-coupled distributed feedback diode laser operating at 2.008 μm. Wavelength modulation spectroscopy approach is used. The mass flow, pressure and temperature of the cell are actively controlled, and able to keep long-term stability. The influence of laser power fluctuation is eliminated by fitting the baseline with cubic polynomial to normalize the raw spectrum. Moving window regression is used to remove the influence of frequency drift on measuring isotope abundance. The system measurement precision is improved by wavelet denosing and Kalman filtering. The experimental results demonstrate that moving window regression method not only extends the stability time of the system but also improves the measurement precision of isotope abundance well, the wavelet denoising improves the signal-to-noise ratio by 2 times that by the method of multi-spectral average, the stability time of the system is 100 s given by Allan variance, and the measurement precision of CO2 isotope ratio is 0. 067‰ after Kalman filtering. The use of small multi-pass cell and the default of denoising devices make the system more portable and improve the real-time and online measurement performance of the system. In addition to the measurement of 13CO2/12CO2 isotope ratio in human breath, by replacing different lasers, the spectrometer can also be used to measure trace gas concentration and the stable isotope abundance of many gas molecules in atmosphere. Therefore, the spectrometer will have broad applications in the areas of medical diagnosis, carbon cycle study and environmental monitoring.
      Corresponding author: Cao Zhen-Song, zscao@aiofm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFC0303900, 2017YFC0209700), the National Natural Science Foundation of China (Grant No. 41405022), the Youth Innovation Promotion Association of Chinese Academy of Sciences Foundation (Grant No. 2015264), and the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. TSKJ2016B12).
    [1]

    Wang C J, Sahay P 2009 Sensors 9 8230

    [2]

    Wojtas J, Bielecki Z, Stacewicz T, Mikolajczyk J, Nowakowski M 2012 Opto-Electron. Rev. 20 26

    [3]

    Braden B, Lembcke B, Kuker W, Caspary W F 2007 Dig. Liver. Dis. 39 795

    [4]

    Logan R P H, Dill S, Bauer F E, Walker M M, Hirschl A M, Gummett P A, Good D, Mossi S 1991 Eur. J. Gastroenterol. Hepatol. 3 915

    [5]

    Cooper D E, Martinelli R U, Carlisle C B, Riris H, Bour D B, Menna R J 1993 Appl. Opt. 32 6727

    [6]

    Crosson E R, Ricci K N, Richman B A, Chilese F C, Owano T G, Provencal R A, Todd M W, Glasser J, Kachanov A A, Paldus B A, Spence T G, Zare R N 2002 Anal. Chem. 74 2003

    [7]

    Wahl E D H, Fidric B, Rella C, Koulikov S, Kharlamov B, Tan S, Kachanov A A, Richman B A, Crosson E R, Paldus B A, Kalaskar S, Bowling D R 2006 Isot. Environ. Health Stud. 42 21

    [8]

    Kasyutich V L, Martin P A, Holdsworth R J 2006 Appl. Phys. B 85 413

    [9]

    Mironchuk E S, Nikolaev I V, Ochkin V N, Rodionova S S, Spiridonov M V, Tskhai S N 2009 Quantum Electron. 39 388

    [10]

    Andreev S N, Mironchuk E S, Nikolaev I V, Ochkin V N, Spiridonov M V, Tskhai S N 2011 Appl. Phys. B 104 73

    [11]

    Worle K, Seichter F, Wilk A, Armacost C, Day T, Godejohann M, Wachter U, Vogt J, Radermacher P, Mizaikoff B 2013 Anal. Chem. 85 2697

    [12]

    Kääriäinen T J, Hietala E, Aikio R, Vasama H, Suopajärvi P, Richmond C, Manninen A 2016 Conference on Lasers and Electro-Optics:Applications and Technology paper ATu1O.1

    [13]

    Wang Y, Jiang J C, Hua L, Hou K Y, Xie Y Y, Chen P, Liu W, Li Q Y, Wang S, Li H Y 2016 Anal. Chem. 88 9047

    [14]

    Zhou Q H, Li E Y, Wang X, Gong Y L, Hua L, Wang W G, Qu T S, Li J H, Liu Y P, Wang C S, Li H Y 2014 Anal. Methods 6 698

    [15]

    Zhou C, Liu N W, He T B, Zhou S, Zhang L, Li J S 2017 Chin. J. Lasers 44 1111003 (in Chinese) [周超, 刘宁武, 何天博, 周胜, 张磊, 李劲松 2017 中国激光 44 1111003]

    [16]

    Gao Y W, Zhang Y J, Chen D, He Y, You K, Chen C, Liu W Q 2016 Acta Opt. Sin. 36 0330001 (in Chinese) [高彦伟, 张玉钧, 陈东, 何莹, 尤坤, 陈晨, 刘文清 2016 光学学报 36 0330001]

    [17]

    Kosterev A A, Curl R F, Tittel F K, Gmachl C, Capasso F, Sivco D L, Baillargeon J N, Hutchinson A L, Cho A Y 2000 Appl. Opt. 39 4425

    [18]

    Erdelyi M, Richter D, Tittle F K 2002 Appl. Phys. B 75 289

    [19]

    Richter D, Wert B P, Fried A, Weibring P, Walega J G, White J W C, Vaughn B H, Tittel F K 2009 Opt. Lett. 34 172

    [20]

    Li X X, Xu L, Gao M G, Tong J J, Feng M C, Liu J G, Liu W Q 2015 Acta Phys. Sin. 64 024217 (in Chinese) [李相贤, 徐亮, 高闽光, 童晶晶, 冯明春, 刘建国, 刘文清 2015 物理学报 64 024217]

    [21]

    Liu K, Wang L, Tan T, Wang G S, Zhang W J, Chen W D, Gao X M 2015 Sensors and Actuators B 220 1000

    [22]

    Tanaka K, Tonokura K 2011 Appl. Phys. B 105 463

    [23]

    Hoang V D 2014 Trends Analyt. Chem. 62 144

    [24]

    Li Z B, Ma H L, Cao Z S, Sun M G, Huang Y B, Zhu W Y, Liu Q 2016 Acta Phys. Sin. 65 053301 (in Chinese) [李志彬, 马宏亮, 曹振松, 孙明国, 黄印博, 朱文越, 刘强 2016 物理学报 65 053301]

    [25]

    Wu T, Chen W D, Kerstel E, Fertein E, Gao X M, Koeth J, Robner K, Bruckner D 2010 Opt. Lett. 35 634

  • [1]

    Wang C J, Sahay P 2009 Sensors 9 8230

    [2]

    Wojtas J, Bielecki Z, Stacewicz T, Mikolajczyk J, Nowakowski M 2012 Opto-Electron. Rev. 20 26

    [3]

    Braden B, Lembcke B, Kuker W, Caspary W F 2007 Dig. Liver. Dis. 39 795

    [4]

    Logan R P H, Dill S, Bauer F E, Walker M M, Hirschl A M, Gummett P A, Good D, Mossi S 1991 Eur. J. Gastroenterol. Hepatol. 3 915

    [5]

    Cooper D E, Martinelli R U, Carlisle C B, Riris H, Bour D B, Menna R J 1993 Appl. Opt. 32 6727

    [6]

    Crosson E R, Ricci K N, Richman B A, Chilese F C, Owano T G, Provencal R A, Todd M W, Glasser J, Kachanov A A, Paldus B A, Spence T G, Zare R N 2002 Anal. Chem. 74 2003

    [7]

    Wahl E D H, Fidric B, Rella C, Koulikov S, Kharlamov B, Tan S, Kachanov A A, Richman B A, Crosson E R, Paldus B A, Kalaskar S, Bowling D R 2006 Isot. Environ. Health Stud. 42 21

    [8]

    Kasyutich V L, Martin P A, Holdsworth R J 2006 Appl. Phys. B 85 413

    [9]

    Mironchuk E S, Nikolaev I V, Ochkin V N, Rodionova S S, Spiridonov M V, Tskhai S N 2009 Quantum Electron. 39 388

    [10]

    Andreev S N, Mironchuk E S, Nikolaev I V, Ochkin V N, Spiridonov M V, Tskhai S N 2011 Appl. Phys. B 104 73

    [11]

    Worle K, Seichter F, Wilk A, Armacost C, Day T, Godejohann M, Wachter U, Vogt J, Radermacher P, Mizaikoff B 2013 Anal. Chem. 85 2697

    [12]

    Kääriäinen T J, Hietala E, Aikio R, Vasama H, Suopajärvi P, Richmond C, Manninen A 2016 Conference on Lasers and Electro-Optics:Applications and Technology paper ATu1O.1

    [13]

    Wang Y, Jiang J C, Hua L, Hou K Y, Xie Y Y, Chen P, Liu W, Li Q Y, Wang S, Li H Y 2016 Anal. Chem. 88 9047

    [14]

    Zhou Q H, Li E Y, Wang X, Gong Y L, Hua L, Wang W G, Qu T S, Li J H, Liu Y P, Wang C S, Li H Y 2014 Anal. Methods 6 698

    [15]

    Zhou C, Liu N W, He T B, Zhou S, Zhang L, Li J S 2017 Chin. J. Lasers 44 1111003 (in Chinese) [周超, 刘宁武, 何天博, 周胜, 张磊, 李劲松 2017 中国激光 44 1111003]

    [16]

    Gao Y W, Zhang Y J, Chen D, He Y, You K, Chen C, Liu W Q 2016 Acta Opt. Sin. 36 0330001 (in Chinese) [高彦伟, 张玉钧, 陈东, 何莹, 尤坤, 陈晨, 刘文清 2016 光学学报 36 0330001]

    [17]

    Kosterev A A, Curl R F, Tittel F K, Gmachl C, Capasso F, Sivco D L, Baillargeon J N, Hutchinson A L, Cho A Y 2000 Appl. Opt. 39 4425

    [18]

    Erdelyi M, Richter D, Tittle F K 2002 Appl. Phys. B 75 289

    [19]

    Richter D, Wert B P, Fried A, Weibring P, Walega J G, White J W C, Vaughn B H, Tittel F K 2009 Opt. Lett. 34 172

    [20]

    Li X X, Xu L, Gao M G, Tong J J, Feng M C, Liu J G, Liu W Q 2015 Acta Phys. Sin. 64 024217 (in Chinese) [李相贤, 徐亮, 高闽光, 童晶晶, 冯明春, 刘建国, 刘文清 2015 物理学报 64 024217]

    [21]

    Liu K, Wang L, Tan T, Wang G S, Zhang W J, Chen W D, Gao X M 2015 Sensors and Actuators B 220 1000

    [22]

    Tanaka K, Tonokura K 2011 Appl. Phys. B 105 463

    [23]

    Hoang V D 2014 Trends Analyt. Chem. 62 144

    [24]

    Li Z B, Ma H L, Cao Z S, Sun M G, Huang Y B, Zhu W Y, Liu Q 2016 Acta Phys. Sin. 65 053301 (in Chinese) [李志彬, 马宏亮, 曹振松, 孙明国, 黄印博, 朱文越, 刘强 2016 物理学报 65 053301]

    [25]

    Wu T, Chen W D, Kerstel E, Fertein E, Gao X M, Koeth J, Robner K, Bruckner D 2010 Opt. Lett. 35 634

  • [1] Wang Xia-Chun, Zhang Zhi-Rong, Cai Yong-Jun, Sun Peng-Shuai, Pang Tao, Xia Hua, Wu Bian, Guo Qiang. Methane gas spectral imaging method based on dual wedge scanning mirrors. Acta Physica Sinica, 2024, 73(7): 074205. doi: 10.7498/aps.73.20231906
    [2] Qi Gang, Huang Yin-Bo, Ling Fei-Tong, Yang Jia-Qi, Huang Jun, Yang Tao, Zhang Lei-Lei, Lu Xing-Ji, Yuan Zi-Hao, Cao Zhen-Song. Measurement of Rb isotope ratio by atomic absorption spectroscopy with multi-microchannel array structure cavity. Acta Physica Sinica, 2023, 72(5): 053201. doi: 10.7498/aps.72.20221963
    [3] Pang Wei-Xu, Li Ning, Huang Xiao-Long, Kang Yang, Li Can, Fan Xu-Dong, Weng Chun-Sheng. Optimization of beam arrangement for tunable diode laser absorption tomography reconstruction based on fractional Tikhonov regularization. Acta Physica Sinica, 2023, 72(3): 037801. doi: 10.7498/aps.72.20221731
    [4] Zhao Rong, Zhou Bin, Liu Qi, Dai Ming-Lu, Wang Bu-Bin, Wang Yi-Hong. Online tomography algorithm based on laser absorption spectroscopy. Acta Physica Sinica, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [5] Long Jiang-Xiong, Shao Li, Zhang Yu-Jun, You Kun, He Ying, Ye Qing, Sun Xiao-Quan. Measurement research of line intensity and self-broadening coefficient for NH3 spectra in 4296–4302 cm–1. Acta Physica Sinica, 2022, 71(16): 164204. doi: 10.7498/aps.71.20220504
    [6] Ye Hao, Huang Yin-Bo, Wang Chen, Liu Guo-Rong, Lu Xing-Ji, Cao Zhen-Song, Huang Yao, Qi Gang, Mei Hai-Ping. Measurement of uranium isotope ratio by laser ablation absorption spectroscopy. Acta Physica Sinica, 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [7] Li Meng-Qi, Zhang Yu-Jun, He Ying, You Kun, Fan Bo-Qiang, Yu Dong-Qi, Xie Hao, Lei Bo-En, Li Xiao-Yi, Liu Jian-Guo, Liu Wen-Qing. NH3 aliasing absorption spectra at 1103.4 cm–1 based on continuous quantum cascade laser. Acta Physica Sinica, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [8] Li Ning, Tu Xin, Huang Xiao-Long, Weng Chun-Sheng. Development of beam arrangement design for tunable diode laser absorption tomography reconstruction based on Tikhonov regularization parameter matrix. Acta Physica Sinica, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [9] Wang Chuan-Wei, Li Ning, Huang Xiao-Long, Weng Chun-Sheng. Two-stage velocity distribution measurement from multiple projections by tunable diode laser absorption spectrum. Acta Physica Sinica, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [10] Li Ning, Lü Xiao-Jing, Jing Weng. Laser intensity and absorbance measurements by tunable diode laser absorption spectroscopy based on non-line fitting algorithm. Acta Physica Sinica, 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [11] Shan Chang-Gong, Wang Wei, Liu Cheng, Xu Xing-Wei, Sun You-Wen, Tian Yuan, Liu Wen-Qing. Detection of stable isotopic ratio of atmospheric CO2 based on Fourier transform infrared spectroscopy. Acta Physica Sinica, 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [12] Li Xiang-Xian, Xu Liang, Gao Min-Guang, Tong Jing-Jing, Feng Ming-Chun, Liu Jian-Guo, Liu Wen-Qing. Influence factors of quantitative analysis precision of greenhouse gases and carbon isotope ratio based on infrared spectroscopy. Acta Physica Sinica, 2015, 64(2): 024217. doi: 10.7498/aps.64.024217
    [13] Xu Xiao-Ming, Miao Wei, Tao Kun. Study on the effect of X-ray diffractometer inherent angle scale error on the precision of lattice parameter calculation. Acta Physica Sinica, 2014, 63(13): 136001. doi: 10.7498/aps.63.136001
    [14] Zhang Zhi-Rong, Wu Bian, Xia Hua, Pang Tao, Wang Gao-Xuan, Sun Peng-Shuai, Dong Feng-Zhong, Wang Yu. Study on the temperature modified method for monitoring gas concentrations with tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [15] Li Xiang-Xian, Gao Min-Guang, Xu Liang, Tong Jing-Jing, Wei Xiu-Li, Feng Ming-Chun, Jin Ling, Wang Ya-Ping, Shi Jian-Guo. Carbon isotope ratio analysis in CO2 based on Fourier transform infrared spectroscopy. Acta Physica Sinica, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [16] Li Qin-Lei, Fan Feng-Ying, Xiong Wei-Jia, Chen An-Ying, Li Yan. Laser frequency scale system in carbon isotopic abundance measurement. Acta Physica Sinica, 2013, 62(24): 242801. doi: 10.7498/aps.62.242801
    [17] Song Jun-Ling, Hong Yan-Ji, Wang Guang-Yu, Pan Hu. Two-dimensional reconstructions of gas temperature and concentration in combustion based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(24): 240702. doi: 10.7498/aps.61.240702
    [18] Li Ning, Weng Chun-Sheng. Gas concentration and temperature reconstruction by genetic simulated annealing algorithm based on multi-wavelengths diode laser absorption spectroscopy. Acta Physica Sinica, 2010, 59(10): 6914-6920. doi: 10.7498/aps.59.6914
    [19] Lai Tian-Shu, Liu Lu-Ning, Lei Liang, Shou Qian, Li Xi-Ying, Wang Jia-Hui, Lin Wei-Zhu. Electron-spin polarization and its relaxation probed by femtosecond laser absorption. Acta Physica Sinica, 2005, 54(2): 967-971. doi: 10.7498/aps.54.967
    [20] MA XING-XIAO. THE KINETICS OF LASER ISOTOPE SEPARATION. Acta Physica Sinica, 1979, 28(1): 1-14. doi: 10.7498/aps.28.1
Metrics
  • Abstract views:  5128
  • PDF Downloads:  240
  • Cited By: 0
Publishing process
  • Received Date:  18 August 2017
  • Accepted Date:  13 November 2017
  • Published Online:  20 March 2019

/

返回文章
返回