Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of Zr doping on solubility of Xe in UO2: A first-principle study

Zhang Zhong Wang Huan Wang Kai-Yuan An Huan Liu Biao Wu Jian-Chun Zou Yu

Citation:

Influence of Zr doping on solubility of Xe in UO2: A first-principle study

Zhang Zhong, Wang Huan, Wang Kai-Yuan, An Huan, Liu Biao, Wu Jian-Chun, Zou Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As a major fuel of the light-water reactors, UO2 has excellent properties such as high melting point, good radiation resistance, corrosion resistance, compatibility with cladding materials, and strong ability to tolerate fission gas. The Zr atoms are inevitably introduced into UO2 lattice during the operation of a nuclear reactor, which can affect the solubility of Xe in the UO2. In this paper, we calculate the formation energy of vacancy defect and the binding energy of Xe in vacancy of Zr doped UO2. The calculations presented here are based on density functional first-principle and projector augmented-wave method. A plane-wave basis set with a cutoff energy of 400 eV is used. The generalized gradient approximation refined by Perdew, Burke and Ernxerhof is employed for determining the exchange and correlation energy. Hubbard U term is used for considering the f-electron localization. Brillouin zone is set to be within 555 k point mesh generated by the Monkhorst-Pack scheme. The self-consistent convergence of total energy is 110-4 eV/atom. The calculations are performed in a 222 supercell. In order to verify the calculating process, the formation energies of U and O point defects are compared with those in the literature. Then the influence of Zr doping in the UO2 on the solubility of Xe in the UO2 is studied. The results show that the ability to form the vacancy defects is different in the U-rich and O-rich environment of UO2. The vacancy defects in UO2 are more likely to form in O-rich UO2. The Zr doping will lead to the increasing of the formation energies of defects in both cases. The Zr doping will also change the binding energy of Xe in void. For all the systems studied, only the binding energy of Xe adsorbed to the void consisting of four point defects increases, while the rest decrease. The solution energy, equaling the sum of the binding energy of Xe and the vacancy formation energy, will increase after doping Zr, because the decrement in binding energy is generally less than the increment in vacancy formation energy. In summary, the presence of Zr will weaken the solubility of Xe in UO2, which is mainly due to the hindering of vacancy defects from forming. This result has a certain value in studying the dissolution of fission product Xe after a small amount of Zr has entered into the UO2 fuel in nuclear reactor.
      Corresponding author: Wu Jian-Chun, jcwu@scu.edu.cn;zouyu@scu.edu.cn ; Zou Yu, jcwu@scu.edu.cn;zouyu@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11405111, 11205107).
    [1]

    Wang H, Yin C G, Liu J H 2013 J. Alloys Compd. 579 305

    [2]

    Song J H, Park I K, Shin Y S, Kim J H, Hong S W, Min B T, Kim H D 2003 Nucl. Eng. Des. 222 1

    [3]

    Lei Y L, Huang H W, Yu C, Yang J, Liu Y J 2014 J. Mater. Sci. Eng. 32 126 (in Chinese) [雷艳丽, 黄华伟, 喻冲, 杨静, 刘艳军 2014 材料科学与工程学报 32 126]

    [4]

    Matzke H, Turos A, Linker G 1994 Nucl. Instrum. Methods Phys. Res. Sect. B 91 294

    [5]

    Brutzel L V, Rarivomanantsoa M 2006 J. Nucl. Mater. 358 209

    [6]

    Martin G, Garcia P, Brutzel L V, Dorado B, Maillard S 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 1727

    [7]

    Xing Z H, Ying S H 2000 Nucl. Power Eng. 21 560 (in Chinese) [邢忠虎, 应诗浩 2000 核动力工程 21 560]

    [8]

    Yun Y, Kim H, Kim H, Park K 2008 J. Nucl. Mater. 378 40

    [9]

    Andersson D A, Uberuaga B P, Nerikar P V, Unal C, Stanek C R 2011 Phys. Rev. B 84 2989

    [10]

    Andersson A D, Perriot R T, Pastore G, Tonks M R, Cooper M W, Liu X Y, Goyal A, Uberuaga B P, Stanek C R https://www.osti.gov/scitech/biblio/1291258/[2017-8-9]

    [11]

    Kulkarni N K, Krishnan K, Kasar U M, Rakshit S K, Sali S K, Aggarwal S K 2009 J. Nucl. Mater. 384 81

    [12]

    Yang C, Zhang X 2004 Mater. Sci. Eng. A 372 287

    [13]

    Lan J H, Wang L, Li S, Yuan L Y, Feng Y X, Sun W, Zhao Y L, Chai Z F, Shi W Q 2013 J. Appl. Phys. 113 183514

    [14]

    Yu J G, Devanathan R, Weber W J 2009 J. Phys.:Condens. Matter 21 435401

    [15]

    Grimes R W, Catlow C R A 1991 Philos. Trans. Phys. Sci. Eng. 335 609

    [16]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [17]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505

    [20]

    Vathonne E, Wiktor J, Freyss M, Jomard G, Bertolus M 2014 J. Phys.:Condens. Matter 26 325501

    [21]

    Dorado B, Amadon B, Freyss M, Bertolus M 2009 Phys. Rev. B 79 235125

    [22]

    Dorado B, Jomard G, Freyss M, Bertolus M 2010 Phys. Rev. B 82 035114

    [23]

    Sinnott S B, Uberuaga B P 2014 Am. Ceram. Soc. Bull. 93 28

    [24]

    Ngayamhappy R, Krack M, Pautz A 2015 J. Phys.:Condens. Matter 27 455401

    [25]

    Hong M, Phillpot S R, Lee C W, Nerikar P, Uberuaga B P, Stanek C R, Sinnott S B 2012 Phys. Rev. B 85 144110

  • [1]

    Wang H, Yin C G, Liu J H 2013 J. Alloys Compd. 579 305

    [2]

    Song J H, Park I K, Shin Y S, Kim J H, Hong S W, Min B T, Kim H D 2003 Nucl. Eng. Des. 222 1

    [3]

    Lei Y L, Huang H W, Yu C, Yang J, Liu Y J 2014 J. Mater. Sci. Eng. 32 126 (in Chinese) [雷艳丽, 黄华伟, 喻冲, 杨静, 刘艳军 2014 材料科学与工程学报 32 126]

    [4]

    Matzke H, Turos A, Linker G 1994 Nucl. Instrum. Methods Phys. Res. Sect. B 91 294

    [5]

    Brutzel L V, Rarivomanantsoa M 2006 J. Nucl. Mater. 358 209

    [6]

    Martin G, Garcia P, Brutzel L V, Dorado B, Maillard S 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 1727

    [7]

    Xing Z H, Ying S H 2000 Nucl. Power Eng. 21 560 (in Chinese) [邢忠虎, 应诗浩 2000 核动力工程 21 560]

    [8]

    Yun Y, Kim H, Kim H, Park K 2008 J. Nucl. Mater. 378 40

    [9]

    Andersson D A, Uberuaga B P, Nerikar P V, Unal C, Stanek C R 2011 Phys. Rev. B 84 2989

    [10]

    Andersson A D, Perriot R T, Pastore G, Tonks M R, Cooper M W, Liu X Y, Goyal A, Uberuaga B P, Stanek C R https://www.osti.gov/scitech/biblio/1291258/[2017-8-9]

    [11]

    Kulkarni N K, Krishnan K, Kasar U M, Rakshit S K, Sali S K, Aggarwal S K 2009 J. Nucl. Mater. 384 81

    [12]

    Yang C, Zhang X 2004 Mater. Sci. Eng. A 372 287

    [13]

    Lan J H, Wang L, Li S, Yuan L Y, Feng Y X, Sun W, Zhao Y L, Chai Z F, Shi W Q 2013 J. Appl. Phys. 113 183514

    [14]

    Yu J G, Devanathan R, Weber W J 2009 J. Phys.:Condens. Matter 21 435401

    [15]

    Grimes R W, Catlow C R A 1991 Philos. Trans. Phys. Sci. Eng. 335 609

    [16]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [17]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505

    [20]

    Vathonne E, Wiktor J, Freyss M, Jomard G, Bertolus M 2014 J. Phys.:Condens. Matter 26 325501

    [21]

    Dorado B, Amadon B, Freyss M, Bertolus M 2009 Phys. Rev. B 79 235125

    [22]

    Dorado B, Jomard G, Freyss M, Bertolus M 2010 Phys. Rev. B 82 035114

    [23]

    Sinnott S B, Uberuaga B P 2014 Am. Ceram. Soc. Bull. 93 28

    [24]

    Ngayamhappy R, Krack M, Pautz A 2015 J. Phys.:Condens. Matter 27 455401

    [25]

    Hong M, Phillpot S R, Lee C W, Nerikar P, Uberuaga B P, Stanek C R, Sinnott S B 2012 Phys. Rev. B 85 144110

  • [1] Liu Dong-Kun, Wang Qing-Yu, Zhang Tian, Zhou Yu, Wang Xiang. Phase-field simulation on fission gas release behavior of large grain UO2 fuel. Acta Physica Sinica, 2024, 73(6): 066102. doi: 10.7498/aps.73.20231773
    [2] Xu Qiu-Mei, Gou Jie, Zhang Chong-Hong, Yang Zhi-Hu, Wang Yan-Yu, Han Xu-Xiao, Li Jian-Yang. In situ study of light emission from SiO2 irradiated by 645 MeV Xe35+ ions. Acta Physica Sinica, 2023, 72(4): 043402. doi: 10.7498/aps.72.20221952
    [3] Lei Jian-Ting, Yu Xuan, Shi Guo-Qiang, Yan Shun-Cheng, Sun Shao-Hua, Wang Quan-Jun, Ding Bao-Wei, Ma Xin-Wen, Zhang Shao-Feng, Ding Jing-Jie. Photoionization of Ne and Xe atoms induced by extreme ultraviolet photons. Acta Physica Sinica, 2022, 71(14): 143201. doi: 10.7498/aps.71.20220341
    [4] Jiang Yan-Bo, Liu Wen-Bo, Sun Zhi-Peng, La Yong-Xiao, Yun Di. Phase-field simulation of void evolution in UO2 under applied stress. Acta Physica Sinica, 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [5] Liu Fei, Wen Zhi-Peng. First principle study of occupancy, bonding characteristics and alloying effect of Zr, Nb, V in bulk α-Fe(C). Acta Physica Sinica, 2019, 68(13): 137101. doi: 10.7498/aps.68.20182282
    [6] Fan Hang, Wang Shan-Shan, Li Yu-Hong. Study on the electronic structure and elastic constants of uranium dioxide by first principles. Acta Physica Sinica, 2015, 64(9): 097101. doi: 10.7498/aps.64.097101
    [7] Zhang Pin-Liang, Gong Zi-Zheng, Ji Guang-Fu, Liu Song. First-principles study of high-pressure physical properties of α-Ti2Zr. Acta Physica Sinica, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [8] Xiao Hong-Xing, Long Chong-Sheng. Molecular dynamics simulation of surface energy of low miller index surfaces in UO2. Acta Physica Sinica, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [9] Li Yao-Zong, Zhang Xiao-An, Liang Chang-Hui, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Wang Xing, Lei Yu, Sun Yuan-Bo, Xu Ge. Au L X-ray and Xe M X-ray emission following 129Xe30+ ion impact on Au surface. Acta Physica Sinica, 2012, 61(6): 063201. doi: 10.7498/aps.61.063201
    [10] Deng Yong-He, Liu Jing-Shuo. Formation abilities and electronic properties of Mg-TM-H (TM = Sc, Ti, V, Y, Zr, Nb) crystal. Acta Physica Sinica, 2011, 60(11): 117102. doi: 10.7498/aps.60.117102
    [11] Chen Qiu-Yun, Lai Xin-Chun, Wang Xiao-Ying, Zhang Yong-Bin, Tan Shi-Yong. First-principles study of the electronic structure and optical properties of UO2. Acta Physica Sinica, 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [12] Wei Yan-Wei, Yang Zong-Xian. The adsorption of Au on Zr-doped CeO2(110) surface: A first-principle study. Acta Physica Sinica, 2008, 57(11): 7139-7144. doi: 10.7498/aps.57.7139
    [13] Zhang Hui, Zhang Guo-Ying, Yang Shuang, Wu Di, Qi Ke-Zhen. Effects of additional element on the glass forming ability and corrosion resistance of bulk Zr-based amorphous alloys. Acta Physica Sinica, 2008, 57(12): 7822-7826. doi: 10.7498/aps.57.7822
    [14] Dai Jia-Yu, Zhang Dong-Wen, Yuan Jian-Min. Reconfiguration of GaAs(110) surface with the adsorption of Xe atoms. Acta Physica Sinica, 2006, 55(11): 6073-6079. doi: 10.7498/aps.55.6073
    [15] Zhang Xiao-An, Zhao Yong-Tao, Li Fu-Li, Yang Zhi-Hu, Xiao Guo-Qing, Zhan Wen-Long. Atomic and ionic light emission spectra of dipole transition and forbidden transition induced by the impact of 126Xe30+ on Ni solid surface. Acta Physica Sinica, 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
    [16] WANG HONG-YAN, GAO TAO, YI YOU-GEN, TAN MING-LIANG, ZHU ZHENG-HE, FU YI-BEI, WANG XIAO-LIN, SUN YING. ANALYTICAL POTENTIAL ENERGY FUNCTION FOR THE GROUND STATE (3Σ+u) OF UO2. Acta Physica Sinica, 1999, 48(12): 2215-2221. doi: 10.7498/aps.48.2215
    [17] HOU QING, LI JIA-MING. ELASTIC SCATTERING OF SPIN ELECTRON BY Xe ATOM. Acta Physica Sinica, 1992, 41(9): 1424-1430. doi: 10.7498/aps.41.1424
    [18] LI JI-ZHOU, LI ZHU-QI, YE CHUN-TANG, WU SHAN-LING, HE MIN, XU YUN-HUI, ZHENG ZHI-TAO, ZHOU LI, YIN DAO-LE. THE EFFECT OF Nb ON PHONONS OF SUPERCONDUCTORS C-15 V2Zr AND V2(HfZr). Acta Physica Sinica, 1983, 32(12): 1613-1617. doi: 10.7498/aps.32.1613
    [19] RUAN JING-HUI, CHEN GUI-YING, CHENG ZHI-XU, GOU CHENG, YANG TONG-HUA, CHEN LIN-FU, ZHOU LI, YIN DAO-LE. RELATION BETWEEN PHONON SPECTRA IN (Hf0.5Zr0.5V2)Hx SYSTEM AND ITS SUPERCONDUCTIVITY. Acta Physica Sinica, 1983, 32(9): 1187-1190. doi: 10.7498/aps.32.1187
    [20] XIONG GUANG-CHENG, YIN DAO-LE. STUDY ON PRESSURE DEPENDENCE OF SUPERCONDUCTIVITY OF C-15 LAVES PHASE ALLOYS: (Hf, Zr, Ta)V2 AND (Hf, Zr, Nb)V2 SYSTEM. Acta Physica Sinica, 1982, 31(9): 1176-1182. doi: 10.7498/aps.31.1176
Metrics
  • Abstract views:  5110
  • PDF Downloads:  188
  • Cited By: 0
Publishing process
  • Received Date:  18 August 2017
  • Accepted Date:  07 December 2017
  • Published Online:  20 February 2019

/

返回文章
返回