Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultra-low frequency active vibration control for cold atom gravimeter based on sliding-mode robust algorithm

Luo Dong-Yun Cheng Bing Zhou Yin Wu Bin Wang Xiao-Long Lin Qiang

Citation:

Ultra-low frequency active vibration control for cold atom gravimeter based on sliding-mode robust algorithm

Luo Dong-Yun, Cheng Bing, Zhou Yin, Wu Bin, Wang Xiao-Long, Lin Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • An ultra-low frequency vibrational noise isolation apparatus from external vibration can be a critical factor in many fields such as precision measurement, high-technology manufacturing, scientific instruments, and gravitational wave detection. To increase the accuracies of these experiments, well performed vibration isolation technology is required. Until recently the cold atom gravimeter has played a crucial role in measuring the acceleration due to gravity and earth gravity gradient. The vibration isolation is one of the key techniques in the cold atom gravimeter. To reduce the vibrational noise caused by the reflecting mirror of Raman beams in the cold atom gravimeter, a compact active low-frequency vibration isolation system based on sliding-mode robust control is designed and demonstrated. The sliding-mode robust control active vibration isolation method is used to solve the vibration problem of Raman mirror in the cold atomic gravimeter. The purpose of vibration control is that the controller enables the system to be at zero state as the system states are away from the equilibrium due to vibration disturbance. In this system, the mechanical setup is based on a commercial passive isolation platform which only plays a role at higher frequency. A sliding-mode robust control subsystem is used to process and feed back the vibration measured by a seismometer which can measure the velocity of the ground vibration. A voice coil actuator is used to control and cancel the motion of a passive vibration isolation platform. The simulation and experiment results of vibration isolation platform show, on the one hand, that the vibration noise power spectral density decreases by up to 99.9%, and that the phase noise in cold atom interferometry produced by vibration decreases by up to nearly 85.3% compared with the results of the passive vibration isolation platform. On the other hand, compared with the lead-lag control method, the vibration noise power spectral density decreases by up to 83.3% and the phase noise in cold atom interferometry produced by vibration decreases by nearly 40.2%. Therefore, the sliding-mode robust control has the advantages of less tuning parameters, strong anti-interference ability, and more obvious vibration isolating effect.
      Corresponding author: Lin Qiang, qlin@zju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFC0601602, 2016YFF0200206) and the National Natural Science Foundation of China (Grant Nos. 61727821, 61475139, 11604296).
    [1]

    Kasevich M, Chu S 1991 Phys. Rev. Lett. B 67 181

    [2]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321

    [3]

    Borde C J 1989 Phys. Lett. A 140 10

    [4]

    Keith D W, Ekstrom C R, Turchette Q A, Pritchard D E, Kasapi S 1991 Phys. Rev. Lett. 66 2693

    [5]

    Clauser J F 1988 Physica B 151 262

    [6]

    Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S, Chu S 1991 Phys. Rev. Lett. 66 2297

    [7]

    Carnal O, Mlynek J 1991 Phys. Rev. Lett. 66 2689

    [8]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 43610

    [9]

    Hauth M, Freier C, Schkolnik M, Schkolnik V, Senger A, Schmidt M, Peters A 2013 Appl. Phys. B 113 49

    [10]

    Jacquey M, Miffre A, Buchner M, Trenec G, Vigue J 2006 Appl. Phys. B 84 617

    [11]

    Zhou L, Xiong Z Y, Wang Y, Tang B, Peng W C, Hao K, Li R B, Liu M, Wang J 2011 Gen. Relat. Gravit 43 1931

    [12]

    Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735

    [13]

    Frier C 2010 Ph. D. Dissertation (Hamburg: Universitt Hamburg)

    [14]

    Tang B, Zhou L, Wang Y H, Xiong Z Y, Xiong Z Y, Wang J, Zhan M S 2014 Rev. Sci. Instrum. 85 093109

    [15]

    Zhou M K, Xiong X, Chen L L, Cui J F, Duan X C, Hu Z K 2015 Rev. Sci. Instrum. 86 046108

    [16]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25

    [17]

    Luan Q L, Chen Z W, Xu J R, He H N 2014 Journal of Vibration and Shock 33 54 (in Chinese)[栾强利, 陈章位, 徐尽荣, 贺惠农 2014 振动与冲击 33 54]

    [18]

    Chen X, Wang H, Tao W, Yang C L 2017 Chinese Journal of Sensors and Actuators 30 777 (in Chinese)[陈希, 王海, 陶伟, 杨春来 2017 传感技术学报 30 777]

    [19]

    Liu G D, Xu X K, Liu B G, Chen F D, Hu T, Lu C, Gan Y 2016 Acta Phys. Sin. 65 209501 (in Chinese)[刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨 2016 物理学报 65 209501]

    [20]

    Lu M M, Zhou J K, Lin J Q, Li Y C, Zhou X Q 2016 Machine Tool Hydraulics 23 46 (in Chinese)[卢明明, 周家康, 林洁琼, 李迎春, 周晓勤 2016 机床与液压 23 46]

    [21]

    Wei Y M, Liu X H, Fan Z C 2017 Aerospace Control and Application 43 1 (in Chinese)[魏延明, 刘旭辉, 樊子辰 2017 空间控制技术与应用 43 1]

    [22]

    Sun Y F 2017 Measurement and Control Technology 34 80 (in Chinese)[孙亚飞 2017 测控技术 34 80]

    [23]

    Hu J P, Zheng C, Li K J, Liu C P, Hu Q 2015 Noise and Vibration Control 35 193 (in Chinese)[胡均平, 郑聪, 李科军, 刘成沛, 胡骞 2015 噪声与振动控制 35 193]

    [24]

    Dai X Z, Liu X Y, Chen L 2016 Acta Phys. Sin. 65 130701 (in Chinese)[代显智, 刘小亚, 陈蕾 2016 物理学报 65 130701]

    [25]

    Li Z L 2015 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)[李子龙 2015 博士学位论文 (武汉:华中科技大学)]

    [26]

    Boulandet R, Michau M, Herzog P, Micheau P, Berry A 2016 J. Sound. Vib. 378 14

    [27]

    Liu L 2011 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[刘磊 2011 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [28]

    Xia Z W, Wang X T, Hou J J, Wei S B, Fang Y Y 2016 J. Low Freq. Noise. Vib. Act. Control 35 17

    [29]

    Aloufi B, Behdinan K, Zu J 2016 Smart Mater. Struct. 25 125004

  • [1]

    Kasevich M, Chu S 1991 Phys. Rev. Lett. B 67 181

    [2]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321

    [3]

    Borde C J 1989 Phys. Lett. A 140 10

    [4]

    Keith D W, Ekstrom C R, Turchette Q A, Pritchard D E, Kasapi S 1991 Phys. Rev. Lett. 66 2693

    [5]

    Clauser J F 1988 Physica B 151 262

    [6]

    Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S, Chu S 1991 Phys. Rev. Lett. 66 2297

    [7]

    Carnal O, Mlynek J 1991 Phys. Rev. Lett. 66 2689

    [8]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 43610

    [9]

    Hauth M, Freier C, Schkolnik M, Schkolnik V, Senger A, Schmidt M, Peters A 2013 Appl. Phys. B 113 49

    [10]

    Jacquey M, Miffre A, Buchner M, Trenec G, Vigue J 2006 Appl. Phys. B 84 617

    [11]

    Zhou L, Xiong Z Y, Wang Y, Tang B, Peng W C, Hao K, Li R B, Liu M, Wang J 2011 Gen. Relat. Gravit 43 1931

    [12]

    Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735

    [13]

    Frier C 2010 Ph. D. Dissertation (Hamburg: Universitt Hamburg)

    [14]

    Tang B, Zhou L, Wang Y H, Xiong Z Y, Xiong Z Y, Wang J, Zhan M S 2014 Rev. Sci. Instrum. 85 093109

    [15]

    Zhou M K, Xiong X, Chen L L, Cui J F, Duan X C, Hu Z K 2015 Rev. Sci. Instrum. 86 046108

    [16]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25

    [17]

    Luan Q L, Chen Z W, Xu J R, He H N 2014 Journal of Vibration and Shock 33 54 (in Chinese)[栾强利, 陈章位, 徐尽荣, 贺惠农 2014 振动与冲击 33 54]

    [18]

    Chen X, Wang H, Tao W, Yang C L 2017 Chinese Journal of Sensors and Actuators 30 777 (in Chinese)[陈希, 王海, 陶伟, 杨春来 2017 传感技术学报 30 777]

    [19]

    Liu G D, Xu X K, Liu B G, Chen F D, Hu T, Lu C, Gan Y 2016 Acta Phys. Sin. 65 209501 (in Chinese)[刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨 2016 物理学报 65 209501]

    [20]

    Lu M M, Zhou J K, Lin J Q, Li Y C, Zhou X Q 2016 Machine Tool Hydraulics 23 46 (in Chinese)[卢明明, 周家康, 林洁琼, 李迎春, 周晓勤 2016 机床与液压 23 46]

    [21]

    Wei Y M, Liu X H, Fan Z C 2017 Aerospace Control and Application 43 1 (in Chinese)[魏延明, 刘旭辉, 樊子辰 2017 空间控制技术与应用 43 1]

    [22]

    Sun Y F 2017 Measurement and Control Technology 34 80 (in Chinese)[孙亚飞 2017 测控技术 34 80]

    [23]

    Hu J P, Zheng C, Li K J, Liu C P, Hu Q 2015 Noise and Vibration Control 35 193 (in Chinese)[胡均平, 郑聪, 李科军, 刘成沛, 胡骞 2015 噪声与振动控制 35 193]

    [24]

    Dai X Z, Liu X Y, Chen L 2016 Acta Phys. Sin. 65 130701 (in Chinese)[代显智, 刘小亚, 陈蕾 2016 物理学报 65 130701]

    [25]

    Li Z L 2015 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)[李子龙 2015 博士学位论文 (武汉:华中科技大学)]

    [26]

    Boulandet R, Michau M, Herzog P, Micheau P, Berry A 2016 J. Sound. Vib. 378 14

    [27]

    Liu L 2011 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[刘磊 2011 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [28]

    Xia Z W, Wang X T, Hou J J, Wei S B, Fang Y Y 2016 J. Low Freq. Noise. Vib. Act. Control 35 17

    [29]

    Aloufi B, Behdinan K, Zu J 2016 Smart Mater. Struct. 25 125004

  • [1] Shi Pei-Wan, Zhu Xiao-Long, Chen Wei, Yu Xin, Yang Zeng-Chen, He Xiao-Xue, Wang Zheng-Xiong. Effect of deposition location of electron cyclotron resonance heating on active control of fishbone modes in the HL-2A tokamak. Acta Physica Sinica, 2023, 72(21): 215208. doi: 10.7498/aps.72.20230696
    [2] Wang Kai-Nan, Xu Han, Zhou Yin, Xu Yun-Peng, Song Wei, Tang Hong-Zhi, Wang Qiao-Wei, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Cheng Bing, Li De-Zhao, Qiao Zhong-Kun, Wu Bin, Lin Qiang. Research on rapid surveying and mapping of outfield absolute gravity based on vehicle-mounted atomic gravimeter. Acta Physica Sinica, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [3] Che Hao, Li An, Fang Jie, Ge Gui-Guo, Gao Wei, Zhang Ya, Liu Chao, Xu Jiang-Ning, Chang Lu-Bin, Huang Chun-Fu, Gong Wen-Bin, Li Dong-Yi, Chen Xi, Qin Fang-Jun. Ship-borne dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, 2022, 71(11): 113701. doi: 10.7498/aps.71.20220113
    [4] Cheng Bing, Chen Pei-Jun, Zhou Yin, Wang Kai-Nan, Zhu Dong, Chu Li, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Experiment on dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [5] Experiment and study on absolute gravity dynamic motion measurement based on cold atom gravimete. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211449
    [6] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Wu Li-Ming, Wang Kai-Nan, Wang He-Lin, Wang Zhao-Ying, Wang Xiao-Long, Lin Qiang. Influence of Raman laser sidebands effect on the measurement accuracy of cold atom gravimeter. Acta Physica Sinica, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [7] Chen Bin, Long Jin-Bao, Xie Hong-Tai, Chen Luo-Kan, Chen Shuai. A mobile three-dimensional active vibration isolator and its application to cold atom interferometry. Acta Physica Sinica, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [8] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [9] Wang Guan, Hu Hua, Wu Kang, Li Gang, Wang Li-Jun. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure. Acta Physica Sinica, 2016, 65(20): 200702. doi: 10.7498/aps.65.200702
    [10] Wu Xue-Li, Liu Jie, Zhang Jian-Hua, Wang Ying. Synchronizing a class of uncertain and variable time-delay fractional-order hyper-chaotic systems by adaptive sliding robust mode control. Acta Physica Sinica, 2014, 63(16): 160507. doi: 10.7498/aps.63.160507
    [11] Tang Chuan-Sheng, Dai Yue-Hong. Finite-time stability control of permanent magnet synchronous motor chaotic system with parameters uncertain. Acta Physica Sinica, 2013, 62(18): 180504. doi: 10.7498/aps.62.180504
    [12] Shen Hui-Jie, Wen Ji-Hong, Yu Dian-Long, Cai Li, Wen Xi-Sen. Research on a cylindrical cloak with active acoustic metamaterial layers. Acta Physica Sinica, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [13] Zhao Jian-Li, Wang Jing, Wang Hui. The study of finite-time stability active control method for Lorenz-Haken laser chaotic system. Acta Physica Sinica, 2012, 61(11): 110209. doi: 10.7498/aps.61.110209
    [14] Lu Yong-Kun. Active adaptive fuzzy integral sliding mode control for unified chaotic system with uncertainties and disturbance. Acta Physica Sinica, 2012, 61(22): 220504. doi: 10.7498/aps.61.220504
    [15] Liu Fu-Cai, Li Jun-Yi, Zang Xiu-Feng. Anti-synchronization of different hyperchaotic systems based on adaptive active control and fractional sliding mode control. Acta Physica Sinica, 2011, 60(3): 030504. doi: 10.7498/aps.60.030504
    [16] Wang Xing-Yuan, Zhu Quan-Long, Zhang Xiao-Peng. Synchronization of new Lü chaotic system via three methods. Acta Physica Sinica, 2011, 60(10): 100510. doi: 10.7498/aps.60.100510
    [17] Guo Hui-Jun, Liu Ding, Zhao Guang-Zhou. Active radial basis function sliding mode controller for unified chaotic system with disturbance and uncertainties. Acta Physica Sinica, 2011, 60(1): 010510. doi: 10.7498/aps.60.010510
    [18] Liu Fu-Cai, Song Jia-Qiu. Anti-synchronizing different chaotic systems using active sliding mode control. Acta Physica Sinica, 2008, 57(8): 4729-4737. doi: 10.7498/aps.57.4729
    [19] Huang Guo-Yong, Jiang Chang-Sheng, Wang Yu-Hui. Synchronization of chaotic systems with uncertainties using robust terminal sliding mode control. Acta Physica Sinica, 2007, 56(11): 6224-6229. doi: 10.7498/aps.56.6224
    [20] Three methods of anti-synchronization of hyperchaotic Chen system. Acta Physica Sinica, 2007, 56(12): 6843-6850. doi: 10.7498/aps.56.6843
Metrics
  • Abstract views:  5785
  • PDF Downloads:  256
  • Cited By: 0
Publishing process
  • Received Date:  22 August 2017
  • Accepted Date:  09 October 2017
  • Published Online:  20 January 2019

/

返回文章
返回