Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication and electrical transport characteristics of the polycrystalline Ca12Al14O33 electride

Feng Qi Zhang Xin Liu Hong-Liang Zhao Ji-Ping Jiang Hao Xiao Yi-Xin Li Fan Zhang Jiu-Xing

Citation:

Fabrication and electrical transport characteristics of the polycrystalline Ca12Al14O33 electride

Feng Qi, Zhang Xin, Liu Hong-Liang, Zhao Ji-Ping, Jiang Hao, Xiao Yi-Xin, Li Fan, Zhang Jiu-Xing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The[Ca24Al28O64]4+:4e- (C12A7:e-) electride composed of densely packed, subnanometer-sized cages. This unique structure makes it possess distinctive applications in fields of electronic emission, superconductor, electrochemical reaction. In this paper, we explore a new method to prepare the bulk of C12A7:e- electride. The following areare systematically studied in this work. 1) the condition of preparing bulk of C12A7:e- electride by solid reaction combining spark plasma sintering and reduction with Ti particles at high temperature, CaCO3 and Al2O3 powders are used as raw materials; 2) the first principle calculations of band structure and density of states of the C12A7:e- electride; 3) the analysis of the electrical transport properties of the C12A7:e- electride. The bulk of C12A7:e- electride is successfully prepared by this method, so the results show that the bulk of C12A7:e- electrode with the electron concentration 1018-1020 cm-3 is synthesized at 1100 ℃ and a vacuum pressure of 10-5 Pa for 10-30 h. In the process of Ti reduction, Ti particles become evaporated and deposit on the surface of C12A7, the free O2- atom in the cages diffuse to the sample surface, the Ti vapor reacts with the O2-, forming a loose TiO_x layer. In order to maintain electrical neutrality, the electrons of the free O2- atom leave from the cages, forming the C12A7:e- electride. In addition, the loose TiO_x layer also provides a channel for the diffusion of the O2- atoms in the cage, ensuring the continuation of the reduction reaction. The calculated band structure and density of states of the bulk C12A7:e- electride show that when electrons replace the O2- atoms in the cage, the Fermi level of C12A7:e- crosses over the cage conduction band (CCB). Thus the free movement of the electron is the main reason for the insulator C12A7 to convert into conductor C12A7:e-. At the same time the electrons near the Fermi level in the cages are easy to jump from the CCB to the frame conduction band (FCB). Combination of the above experimental results suggests that the electrons in cages are easier to escape to vacuum under the action of electric field or thermal field, which is the main reason for low work function of C12A7:e-. This way provides an new approach to the realization of the insulator C12A7 converting into C12A7:e- electride. And the C12A7:e- is a good electronic emission material due to low work function, low working temperature, and highly anti-poisoning ability, so this method of preparing bulk C12A7:e- electride provides a good new way to synthesize a new electronic emission material.
      Corresponding author: Zhang Xin, zhxin@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371010, 51572066, 50801002) and the Natural Science Foundation of Beijing, China(Grant No. 2112007).
    [1]

    Kerrour W, Kabir A, Schmerber G, Boudjema B, Zerkout S, Bouabellou A, Sedrati C 2016 J. Mater. Sci.:Mater. Electron. 27 10106

    [2]

    Kim S W, Matsuishi S, Nomura T, Kubota Y, Takata M, Hayashi K, Kamiya T, Hirano M, Hosono H 2007 Nano Lett. 7 1138

    [3]

    Kurashige K, Toda Y, Matstuishi S, Hayashi K, Hirano M, Hosono H 2006 Cryst. Growth Des. 6 1602

    [4]

    Kiyanagi R, Richardson J W, Sakamoto N, Yoshimura M 2008 Acta Cryst. 179 2365

    [5]

    Watanabe S, Watanabe T, Ito K, Miyakawa N, Ito S, Hosono H, Mikoshiba S 2011 Sci. Technol. Adv. Mat. 12 034410

    [6]

    Pan R K, Feng S, Tao H Z 2017 Mat. Sci. Eng. 67 1

    [7]

    Yang S, Kondo J N, Hayashi K, Hirano M, Domen K, Hosono H 2004 Appl. Catal. A:Gen. 277 239

    [8]

    Park J K, Shimomura T, Yamanaka M, Watauchi S, Kishio K, Tanaka I 2005 Cryst. Res. Technol. 40 329

    [9]

    Miyakawa M, Kim S W, Hirano M, Kohama Y, Kawaji H, Atake T, Ikegami H, Kono K, Hosono H 2007 J. Am. Chem. Soc. 129 7270

    [10]

    Li J, Yin B, Fuchigami T, Inagi S, Hosono H, Ito S 2012 Electrochem. Commun. 17 52

    [11]

    Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M, Hosono H 2012 Nat. Chem. 4 934

    [12]

    Bao L H, Tao R Y, Tegus O, Huang Y K, Leng H Q, de Visser A 2017 Acta Phys. Sin. 66 186102 (in Chinese)[包黎红, 陶如玉, 特古斯, 黄颖楷, 冷华倩, Anne de Visser 2017 物理学报 66 186102]

    [13]

    Kim S W, Hayashi K, Hirano M, Hosono H, Tanaka I 2006 J. Am. Ceram. Soc. 89 294

    [14]

    Kim S W, Toda Y, Hayashi K, Hirano M, Hosono H 2006 Chem. Mater. 18 1938

    [15]

    Toda Y, Matsuishi S, Hayashi K, Ueda K, Kamiya T, Hirano M, Hosono H 2004 Adv. Mater. 16 685

    [16]

    Satoru M, Yoshitake T, Masashi M, Katsuro H, Toshio K, Masahiro H, Lsao T, Hideo H 2003 Science 301 626

    [17]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 88 75

    [18]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 Eur. Phys. J. B 89 80

    [19]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [20]

    Wang L Z, Zhao Y Q, Liu B, Wu L J, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188

    [21]

    Jiang P G, Wang Z B, Yan Y B, Liu W J 2017 Acta Phys. Sin. 66 246801 (in Chinese)[姜国平, 汪正兵, 闫永播, 刘文杰 2017 物理学报 66 246801]

    [22]

    Sushko P V, Shluger A L, Hirano M, Hosono H 2007 J. Am. Chem. Soc. 129 942

  • [1]

    Kerrour W, Kabir A, Schmerber G, Boudjema B, Zerkout S, Bouabellou A, Sedrati C 2016 J. Mater. Sci.:Mater. Electron. 27 10106

    [2]

    Kim S W, Matsuishi S, Nomura T, Kubota Y, Takata M, Hayashi K, Kamiya T, Hirano M, Hosono H 2007 Nano Lett. 7 1138

    [3]

    Kurashige K, Toda Y, Matstuishi S, Hayashi K, Hirano M, Hosono H 2006 Cryst. Growth Des. 6 1602

    [4]

    Kiyanagi R, Richardson J W, Sakamoto N, Yoshimura M 2008 Acta Cryst. 179 2365

    [5]

    Watanabe S, Watanabe T, Ito K, Miyakawa N, Ito S, Hosono H, Mikoshiba S 2011 Sci. Technol. Adv. Mat. 12 034410

    [6]

    Pan R K, Feng S, Tao H Z 2017 Mat. Sci. Eng. 67 1

    [7]

    Yang S, Kondo J N, Hayashi K, Hirano M, Domen K, Hosono H 2004 Appl. Catal. A:Gen. 277 239

    [8]

    Park J K, Shimomura T, Yamanaka M, Watauchi S, Kishio K, Tanaka I 2005 Cryst. Res. Technol. 40 329

    [9]

    Miyakawa M, Kim S W, Hirano M, Kohama Y, Kawaji H, Atake T, Ikegami H, Kono K, Hosono H 2007 J. Am. Chem. Soc. 129 7270

    [10]

    Li J, Yin B, Fuchigami T, Inagi S, Hosono H, Ito S 2012 Electrochem. Commun. 17 52

    [11]

    Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M, Hosono H 2012 Nat. Chem. 4 934

    [12]

    Bao L H, Tao R Y, Tegus O, Huang Y K, Leng H Q, de Visser A 2017 Acta Phys. Sin. 66 186102 (in Chinese)[包黎红, 陶如玉, 特古斯, 黄颖楷, 冷华倩, Anne de Visser 2017 物理学报 66 186102]

    [13]

    Kim S W, Hayashi K, Hirano M, Hosono H, Tanaka I 2006 J. Am. Ceram. Soc. 89 294

    [14]

    Kim S W, Toda Y, Hayashi K, Hirano M, Hosono H 2006 Chem. Mater. 18 1938

    [15]

    Toda Y, Matsuishi S, Hayashi K, Ueda K, Kamiya T, Hirano M, Hosono H 2004 Adv. Mater. 16 685

    [16]

    Satoru M, Yoshitake T, Masashi M, Katsuro H, Toshio K, Masahiro H, Lsao T, Hideo H 2003 Science 301 626

    [17]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 88 75

    [18]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 Eur. Phys. J. B 89 80

    [19]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [20]

    Wang L Z, Zhao Y Q, Liu B, Wu L J, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188

    [21]

    Jiang P G, Wang Z B, Yan Y B, Liu W J 2017 Acta Phys. Sin. 66 246801 (in Chinese)[姜国平, 汪正兵, 闫永播, 刘文杰 2017 物理学报 66 246801]

    [22]

    Sushko P V, Shluger A L, Hirano M, Hosono H 2007 J. Am. Chem. Soc. 129 942

  • [1] Ding Li-Jie, Zhang Xiao-Tian, Guo Xin-Yi, Xue Yang, Lin Chang-Qing, Huang Dan. First-principles study of SrSnO3 as transparent conductive oxide. Acta Physica Sinica, 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [2] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [3] Zhong Shu-Lin, Qiu Jia-Hao, Luo Wen-Wei, Wu Mu-Sheng. First-principles study of properties of rare-earth-doped LiFePO4. Acta Physica Sinica, 2021, 70(15): 158203. doi: 10.7498/aps.70.20210227
    [4] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [5] Zhang Shu-Ting, Sun Zhi, Zhao Lei. First-principles study of graphene nanoflakes with large spin property. Acta Physica Sinica, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [6] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo, Liu Wen-Jie. First-principles study of absorption mechanism of hydrogen on W20O58 (010) surface. Acta Physica Sinica, 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [7] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [8] Peng Qiong, He Chao-Yu, Li Jin, Zhong Jian-Xin. First-principles study of electronic properties of MoSi2 thin films. Acta Physica Sinica, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [9] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [10] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [11] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [12] Gu Mu, Lin Ling, Liu Bo, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. Fist-principle calculation for electronic structure of M’-GdTaO4. Acta Physica Sinica, 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [13] Lü Quan, Huang Wei-Qi, Wang Xiao-Yun, Meng Xiang-Xiang. The first-principle calculations and analysis on density of states of silion plane (111) formed by nitrogen film. Acta Physica Sinica, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [14] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [15] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [16] Hu Fang, Ming Xing, Fan Hou-Gang, Chen Gang, Wang Chun-Zhong, Wei Ying-Jin, Huang Zu-Fei. First-principles study on the electronic structures of the ladder compound NaV2O4F. Acta Physica Sinica, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [17] Song Qing-Gong, Wang Yan-Feng, Song Qing-Long, Kang Jian-Hai, Chu Yong. First-principle study on the electronic structures of intercalation compound Ag1/4TiSe2. Acta Physica Sinica, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [18] Ming Xing, Fan Hou-Gang, Hu Fang, Wang Chun-Zhong, Meng Xing, Huang Zu-Fei, Chen Gang. First-principles study on the electronic structures of spin-Peierls compound GeCuO3. Acta Physica Sinica, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [19] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [20] Liu Li-Hua, Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles study of the effects of Sr segregated on Al grain boundary. Acta Physica Sinica, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
Metrics
  • Abstract views:  5687
  • PDF Downloads:  176
  • Cited By: 0
Publishing process
  • Received Date:  01 September 2017
  • Accepted Date:  05 December 2017
  • Published Online:  20 February 2019

/

返回文章
返回