Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performance analysis of a refrigerator operating between an infinite-sized hot reservoir and a finite-sized cold one within linear irreversible thermodynamics

Zhang Rong Lu Can-Can Li Qian-Wen Liu Wei Bai Long

Citation:

Performance analysis of a refrigerator operating between an infinite-sized hot reservoir and a finite-sized cold one within linear irreversible thermodynamics

Zhang Rong, Lu Can-Can, Li Qian-Wen, Liu Wei, Bai Long
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • How to optimize the performances of heat devices operating between finite-sized heat sources and sinks has become a very important issue in the field of finite-time thermodynamics. In this paper, a physical model of the refrigerator operating between an infinite-sized hot reservoir and a finite-sized cold one is proposed, and by using the principles of finite-time thermodynamics and the theory of linear irreversible thermodynamics, we present the analytical expressions of the input power and the coefficient of performance (COP) under the tight-coupling condition, and analyze the performance characteristics of the refrigerator in detail. When the temperature of the cold reservoir is changed with fixing the environment temperature (the temperature of the hot reservoir), it is found that there does not exist a well-defined optimal relation between the input power and a duration time of the refrigerating process, which is a remarkable difference from the working process of a heat engine operating between a finite-sized hot reservoir and an infinite-sized cold one. We further find that the COP exhibits the monotonically decreasing trend with the increase of the input power, but the increase of the exergy leads to the enhancement of the COP. This feature can be understood as follows:when P is small, this means that the duration time is large, thus the refrigerating process approaches to the quasistatic operation, which induces the large COP. In particular, when P0, the COP max. The increase of P implies the reduction of , thus the refrigerating process keeps away from the quasistatic process and approaches to the actual irreversible process, which causes the COP to decrease. On the contrary, shows the increasing trend with the increase of the exergy E. This is because the increase of E means the enhancement of at fixing the input power P, which corresponds to a slow refrigerating process. As a result, E exhibits the increasing behaviors due to the emergence of the quasistatic process. From the above analyses, we can find that an appropriate proposal to optimize the refrigerating performance of heat devices should be based on the actual parameters and the real external environment, thus it is possible to obtain the optimal refrigerating objective at the expense of the suitable input power. These results are not only helpful in the in-depth understanding of the refrigerator operating between an infinite-sized hot reservoir and a finite-sized cold one, but also of great engineering interest in designing realistic heat deices. Our method can also generalize the investigation of heat pumps. In addition, when the tight-coupling condition is false due to the breaking of time-reversal symmetry, there needs to be further consideration about it from the angle of physics.
      Corresponding author: Bai Long, bailong2200@163.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014QNA72).
    [1]

    Curzon F, Ahlborn B 1975 Am. J. Phys. 43 22

    [2]

    Vaudrey A, Lanzetta F, Feidt M 2014 J. Non-Equil. Therm. 39 199

    [3]

    van den Broeck C 2005 Phys. Rev. Lett. 95 190602

    [4]

    Andresen B 2011 Angew. Chem. Int. Ed. 50 2690

    [5]

    Ding Z M, Chen L G, Wang W H, Sun F R 2015 Sci. Sin. Technolog. 45 889 (in Chinese)[丁泽民, 陈林根, 王文华, 孙丰瑞 2015 中国科学:技术科学 45 889]

    [6]

    Bi Y H, Chen L G 2017 Optimal Peformamnce of Gas Heat Pumps With the Framework of Finite-time Thermodynamics (Beijing:Science Press) pp1-20 (in Chinese)[毕月虹, 陈林根 2017 空气热泵性能有限时间热力学优化(北京:科学出版社) 第1–20页]

    [7]

    Gordon J M, Huleihil M 1991 J. Appl. Phys. 69 1

    [8]

    Bejan A 1996 J. Appl. Phys. 79 1191

    [9]

    Lu C C, Bai L 2017 Acta Phys. Sin. 66 130501 (in Chinese)[卢灿灿, 白龙 2017 物理学报 66 130501]

    [10]

    Johal R S 2017 Phys. Rev. E 96 012151

    [11]

    Yan H, Guo H 2012 Phys. Rev. E 86 051135

    [12]

    Sheng S, Tu Z C 2014 Phys. Rev. E 89 012129

    [13]

    Ondrechen M J, Rubin M H, Band Y B 1983 J. Chem. Phys. 78 4721

    [14]

    Ondrechen M J, Andresen B, Mozurkewich M, Berry R S 1981 Am. J. Phys. 49 681

    [15]

    Leff H S 1987 Am. J. Phys. 55 701

    [16]

    Andresen B, Berry R S, Ondrechen M J, Salamon P 1984 Acc. Chem. Res. 17 266

    [17]

    Yan Z, Chen L X 1997 J. Phys. A:Math. Gen. 30 8119

    [18]

    Izumida Y, Okuda K 2014 Phys. Rev. Lett. 112 180603

    [19]

    Wang Y 2014 Phys. Rev. E 90 062140

    [20]

    Wang Y 2016 Phys. Rev. E 93 021120

    [21]

    de Cisneros B J, Arias-Hernández L A, Hernández A C 2006 Phys. Rev. E 73 057103

    [22]

    Izumida Y, Okuda K, Roco J M M, Hernández A C 2015 Phys. Rev. E 91 052140

  • [1]

    Curzon F, Ahlborn B 1975 Am. J. Phys. 43 22

    [2]

    Vaudrey A, Lanzetta F, Feidt M 2014 J. Non-Equil. Therm. 39 199

    [3]

    van den Broeck C 2005 Phys. Rev. Lett. 95 190602

    [4]

    Andresen B 2011 Angew. Chem. Int. Ed. 50 2690

    [5]

    Ding Z M, Chen L G, Wang W H, Sun F R 2015 Sci. Sin. Technolog. 45 889 (in Chinese)[丁泽民, 陈林根, 王文华, 孙丰瑞 2015 中国科学:技术科学 45 889]

    [6]

    Bi Y H, Chen L G 2017 Optimal Peformamnce of Gas Heat Pumps With the Framework of Finite-time Thermodynamics (Beijing:Science Press) pp1-20 (in Chinese)[毕月虹, 陈林根 2017 空气热泵性能有限时间热力学优化(北京:科学出版社) 第1–20页]

    [7]

    Gordon J M, Huleihil M 1991 J. Appl. Phys. 69 1

    [8]

    Bejan A 1996 J. Appl. Phys. 79 1191

    [9]

    Lu C C, Bai L 2017 Acta Phys. Sin. 66 130501 (in Chinese)[卢灿灿, 白龙 2017 物理学报 66 130501]

    [10]

    Johal R S 2017 Phys. Rev. E 96 012151

    [11]

    Yan H, Guo H 2012 Phys. Rev. E 86 051135

    [12]

    Sheng S, Tu Z C 2014 Phys. Rev. E 89 012129

    [13]

    Ondrechen M J, Rubin M H, Band Y B 1983 J. Chem. Phys. 78 4721

    [14]

    Ondrechen M J, Andresen B, Mozurkewich M, Berry R S 1981 Am. J. Phys. 49 681

    [15]

    Leff H S 1987 Am. J. Phys. 55 701

    [16]

    Andresen B, Berry R S, Ondrechen M J, Salamon P 1984 Acc. Chem. Res. 17 266

    [17]

    Yan Z, Chen L X 1997 J. Phys. A:Math. Gen. 30 8119

    [18]

    Izumida Y, Okuda K 2014 Phys. Rev. Lett. 112 180603

    [19]

    Wang Y 2014 Phys. Rev. E 90 062140

    [20]

    Wang Y 2016 Phys. Rev. E 93 021120

    [21]

    de Cisneros B J, Arias-Hernández L A, Hernández A C 2006 Phys. Rev. E 73 057103

    [22]

    Izumida Y, Okuda K, Roco J M M, Hernández A C 2015 Phys. Rev. E 91 052140

  • [1] Li Ke, Wang Ya-Nan, Liu Ping, Yu Fang-Qiu, Dai Wei, Shen Jun. Experimental research on a 50 mK multi-stage adiabatic demagnetization refrigerator. Acta Physica Sinica, 2023, 72(19): 190702. doi: 10.7498/aps.72.20231102
    [2] Liu Xu-Ming, Pan Chang-Zhao, Zhang Yu, Liao Yi, Guo Wei-Jie, Yu Da-Peng. 4 K GM-type pulse tube cryocooler with large cooling capacity. Acta Physica Sinica, 2023, 72(19): 190701. doi: 10.7498/aps.72.20230910
    [3] Zu Hong-Ye, Cheng Wei-Jun, Wang Ya-Nan, Wang Xiao-Tao, Li Ke, Dai Wei. Experimental analysis of condensation-pump dilution refrigerators. Acta Physica Sinica, 2023, 72(8): 080701. doi: 10.7498/aps.72.20222257
    [4] Yang Run-Heng, An Shun, Shang Wen, Deng Tao. Research progress of bio-inspired radiative cooling. Acta Physica Sinica, 2022, 71(2): 024401. doi: 10.7498/aps.71.20211854
    [5] Xu Shuai, Yang Yun-Yun, Liu Xing, He Ji-Zhou. Performance optimization of three-terminal nanowire refrigerator based on one-dimensional ballistic conductor. Acta Physica Sinica, 2022, 71(2): 020501. doi: 10.7498/aps.71.20211077
    [6] Liu Xing, Xu Shuai, Gao Jin-Zhu, He Ji-Zhou. Four-terminal hybrid driven refrigerator based on three coupled quantum dots. Acta Physica Sinica, 2022, 71(19): 190502. doi: 10.7498/aps.71.20220904
    [7] Chen Hao, Wang Cun-Hai, Cheng Zi-Ming, Wei Lin-Yang, Wang Fu-Qiang, Zhang Xin-Xin. Performance analysis of thermoelectric system based on radiative cooling and greenhouse effects. Acta Physica Sinica, 2021, 70(21): 214401. doi: 10.7498/aps.70.20210356
    [8] Wang Chang, Li Ke, Shen Jun, Dai Wei, Wang Ya-Nan, Luo Er-Cang, Shen Bao-Gen, Zhou Yuan. Ultra-low temperature adiabatic demagnetization refrigerator for sub-Kelvin region. Acta Physica Sinica, 2021, 70(9): 090702. doi: 10.7498/aps.70.20202237
    [9] Performance optimization of a three-terminal nanowire refrigerator based on one-dimensional ballistic conductor. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211077
    [10] Fu Bai-Shan, Liao Yi, Zhou Jun. Dilution refrigerator and its heat transfer problems. Acta Physica Sinica, 2021, 70(23): 230202. doi: 10.7498/aps.70.20211760
    [11] Liu Yang, Pan Deng, Chen Wen, Wang Wen-Qiang, Shen Hao, Xu Hong-Xing. Radiative heat transfer in nanophotonics: From thermal radiation enhancement theory to radiative cooling applications. Acta Physica Sinica, 2020, 69(3): 036501. doi: 10.7498/aps.69.20191906
    [12] Li Wei, Fu Jing, Yang Yun-Yun, He Ji-Zhou. Quantum dot refrigerator driven by photon. Acta Physica Sinica, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [13] Li Zhen-Xing, Li Ke, Shen Jun, Dai Wei, Gao Xin-Qiang, Guo Xiao-Hui, Gong Mao-Qiong. Progress of room temperature magnetic refrigeration technology. Acta Physica Sinica, 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [14] Chang Song-Tao, Sun Zhi-Yuan, Zhang Yao-Yu, Zhu Wei. Internal stray radiation measurement for cooled infrared imaging systems. Acta Physica Sinica, 2015, 64(5): 050702. doi: 10.7498/aps.64.050702
    [15] He Xian, He Ji-Zhou, Xiao Yu-Ling. A four-level quantum refrigeration cycle. Acta Physica Sinica, 2012, 61(15): 150302. doi: 10.7498/aps.61.150302
    [16] He Ji-Zhou, Miao Gui-Ling, He Bing-Xiang. Influence of nanowire heterostructure on performanceof electron refrigerator. Acta Physica Sinica, 2011, 60(4): 040509. doi: 10.7498/aps.60.040509
    [17] Meng Qing-Miao, Jiang Ji-Jian, Li Chuan-An. Instantaneous radiation energy flux and instantaneous radiation power of dynamic spherically symmetric black holes. Acta Physica Sinica, 2010, 59(3): 1481-1486. doi: 10.7498/aps.59.1481
    [18] He Bing-Xiang, He Ji-Zhou. Thermoelectric refrigerator of a double-barrier InAs/InP nanowire heterostructure. Acta Physica Sinica, 2010, 59(6): 3846-3850. doi: 10.7498/aps.59.3846
    [19] Han Peng, Jin Kui-Juan, Zhou Yue-Liang, Zhou Qing-Li, Wang Xu, Zhao Song-Qing, Ma Zhong-Shui. Opto-thermionic refrigeration of semiconductor heterostructure. Acta Physica Sinica, 2005, 54(9): 4345-4349. doi: 10.7498/aps.54.4345
    [20] Ma Wei-Zeng, Ji Cheng-Chang, Li Jian-Guo, Xu Zhen-Ming. Temperature character of electromagnetic levitation melting. Acta Physica Sinica, 2003, 52(4): 834-839. doi: 10.7498/aps.52.834
Metrics
  • Abstract views:  5281
  • PDF Downloads:  125
  • Cited By: 0
Publishing process
  • Received Date:  11 September 2017
  • Accepted Date:  29 October 2017
  • Published Online:  20 February 2019

/

返回文章
返回