Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

icMRCI+Q study on spectroscopic properties and predissociation mechanisms of electronic states of BF+ cation

Xing Wei Sun Jin-Feng Shi De-Heng Zhu Zun-Lüe

Citation:

icMRCI+Q study on spectroscopic properties and predissociation mechanisms of electronic states of BF+ cation

Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we study the spectroscopic properties and predissociation mechanisms of 14 states, which come from the first two dissociation channels of the BF+ cation. The potential energy curves of 14 Λ-S (X2Σ+, 12Π, 22Π, 22Σ+, 14Σ+, 14Δ, 14Σ1, 12Δ, 12Σ1, 32Σ+, 14Π, 24Π, 24Σ+, and 32Π) and corresponding 30 Ω states are calculated using the complete active space self-consistent field method, which is followed by the valence internally contracted multireference configuration interaction approach with the Davidson modification. To improve the reliability and accuracy of the potential energy curves, the core-valence correlation and scalar relativistic corrections, as well as the extrapolation of potential energy to the complete basis set limit are taken into account. The spin-orbit coupling is computed using the state interaction approach with the Breit-Pauli Hamiltonian. Based on these potential energy curves, the spectroscopic parameters and vibrational levels are determined for all the bound and quasi-bound Λ-S and Ω states. The present ground-state spectroscopic constants match well with the available experimental data. In addition, the vertical and adiabatic ionization potentials from the X1Σ+ state of BF molecule to the X2Σ+, 12Π, and 22Σ+ states of BF+ cation are calculated. The results of BF+(X2Σ+) ← BF(X1Σ+) ionization are in good agreement with the measurements. Various curve crossings of Λ-S states are revealed. We calculate the spin-orbit matrix elements between two interacting electronic states in the curve crossing region. With the help of present spin-orbit coupling matrix elements, we analyze the predissociation mechanisms of X2Σ+ and 32Π states along with the perturbations of the nearby states to 22Π, 14Σ+ and 32Σ+ states for the first time. The predissociation of X2Σ+ and 32Π states have a chance to occur around the vibrational levels υ"=30 and υ'=0 due to spin-orbit coupling, respectively. The present results also indicate that the υ' ≥ 9 vibrational levels of 22Π state are perturbed by the crossing states 22Σ+, 14Σ+, 14Δ, 14Σ1, 12Δ, 12Σ1, 32Σ+, and 14Π, that the υ' ≥ 4 vibrational levels of 14Σ+ state are perturbed via the interacting states 14Σ1 and 12Σ1, and the great perturbations between υ' ≥ 4 vibrational levels of 32Σ+ state and υ' ≥ 0 vibrational levels of 14Π state. For the 30 Ω state, we also calculate the relative energies of dissociation limits compared with the lowest one matching well with the experimental ones. Finally, the Franck-Condon factors, Einstein coefficients, and radiative lifetimes are evaluated for the 22Π (υ'=0-9)-X2Σ+, 22Σ+ (υ'=0-2)-X2Σ+, (3)1/2-(1)1/21st well, and (2)3/2 (υ'=0-9)-(1)1/21st well transitions.
      Corresponding author: Sun Jin-Feng, jfsun@haust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275132, 11274097).
    [1]

    Chakrabarti K, Tennyson J 2009 J. Phys. B:At. Mol. Opt. Phys. 42 105204

    [2]

    Hildenbrand D L 1971 Int. J. Mass Spectrom. Ion Phys. 7 255

    [3]

    Robinson D W 1963 J. Mol. Spectrosc. 11 275

    [4]

    Caton R B, Douglas A E 1970 Can. J. Phys. 48 432

    [5]

    Dyke J M, Kirby C, Morris A 1983 J. Chem. Soc., Faraday Trans. 2 79 483

    [6]

    Winifred M H 1965 J. Chem. Phys. 43 624

    [7]

    Nesbet R K 1965 J. Chem. Phys. 43 4403

    [8]

    Cade P E, Huo W M 1975 At. Data Nucl. Data Tables 15 1

    [9]

    Rosmus P, Werner H J, Grimm M 1982 Chem. Phys. Lett. 92 250

    [10]

    Bauschlicher C W, Ricca A 1999 J. Phys. Chem. A 103 4313

    [11]

    Bruna P J, Grein F 2001 J. Phys. Chem. A 105 3328

    [12]

    Magoulas I, Kalemos A, Mavridis A 2013 J. Chem. Phys. 138 104312

    [13]

    Niu X H, Shu H B, Zhu Z L, Chen Q 2016 Spectrochim. Acta A 159 60

    [14]

    Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103

    [15]

    Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101

    [16]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L, L S X 2015 Acta Phys. Sin. 64 153101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略, 吕淑霞 2015 物理学报 64 153101]

    [17]

    Liu X J, Miao F J, Li R, Zhang C H, Li Q N, Yan B 2015 Acta Phys. Sin. 64 123101 (in Chinese) [刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰 2015 物理学报 64 123101]

    [18]

    Zhao S T, Liang G Y, Li R, Li Q N, Zhang Z G, Yan B 2017 Acta Phys. Sin. 66 063103 (in Chinese) [赵书涛, 梁桂颖, 李瑞, 李奇楠, 张志国, 闫冰 2017 物理学报 66 063103]

    [19]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [20]

    Richartz A, Buenker R J 1978 Chem. Phys. 28 305

    [21]

    Wilson A K, van Mourik T, Dunning T H 1996 J. Mol. Struct. (Theochem) 388 339

    [22]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [23]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572

    [24]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [25]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [26]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317

    [27]

    Le Roy R J 2007 LEVEL 8.0:A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (Waterloo:University of Waterloo Chemical Physics Research Report) CP-663

    [28]

    Kramida A E, Ryabtsev A N 2007 Phys. Scr. 76 544

    [29]

    Lidén K 1949 Ark. Fys. 1 229

    [30]

    Ryabtsev A N, Kink I, Awaya Y, Ekberg J O, Mannervik S, Ölme A, Martinson I 2005 Phys. Scr. 71 489

    [31]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC:National Bureau of Standard) p60

    [32]

    Okabe H (translated by Tang G Q, Bai Y B, Lu Z G) 1982 Photochemistry of Small Molecules (Changchun:Jilin People's Press) p40 (in Chinese) [冈田秀雄著(汤国庆, 白玉白, 陆志刚译) 1982 小分子光化学(长春:吉林人民出版社)第40页]

  • [1]

    Chakrabarti K, Tennyson J 2009 J. Phys. B:At. Mol. Opt. Phys. 42 105204

    [2]

    Hildenbrand D L 1971 Int. J. Mass Spectrom. Ion Phys. 7 255

    [3]

    Robinson D W 1963 J. Mol. Spectrosc. 11 275

    [4]

    Caton R B, Douglas A E 1970 Can. J. Phys. 48 432

    [5]

    Dyke J M, Kirby C, Morris A 1983 J. Chem. Soc., Faraday Trans. 2 79 483

    [6]

    Winifred M H 1965 J. Chem. Phys. 43 624

    [7]

    Nesbet R K 1965 J. Chem. Phys. 43 4403

    [8]

    Cade P E, Huo W M 1975 At. Data Nucl. Data Tables 15 1

    [9]

    Rosmus P, Werner H J, Grimm M 1982 Chem. Phys. Lett. 92 250

    [10]

    Bauschlicher C W, Ricca A 1999 J. Phys. Chem. A 103 4313

    [11]

    Bruna P J, Grein F 2001 J. Phys. Chem. A 105 3328

    [12]

    Magoulas I, Kalemos A, Mavridis A 2013 J. Chem. Phys. 138 104312

    [13]

    Niu X H, Shu H B, Zhu Z L, Chen Q 2016 Spectrochim. Acta A 159 60

    [14]

    Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103

    [15]

    Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101

    [16]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L, L S X 2015 Acta Phys. Sin. 64 153101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略, 吕淑霞 2015 物理学报 64 153101]

    [17]

    Liu X J, Miao F J, Li R, Zhang C H, Li Q N, Yan B 2015 Acta Phys. Sin. 64 123101 (in Chinese) [刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰 2015 物理学报 64 123101]

    [18]

    Zhao S T, Liang G Y, Li R, Li Q N, Zhang Z G, Yan B 2017 Acta Phys. Sin. 66 063103 (in Chinese) [赵书涛, 梁桂颖, 李瑞, 李奇楠, 张志国, 闫冰 2017 物理学报 66 063103]

    [19]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [20]

    Richartz A, Buenker R J 1978 Chem. Phys. 28 305

    [21]

    Wilson A K, van Mourik T, Dunning T H 1996 J. Mol. Struct. (Theochem) 388 339

    [22]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [23]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572

    [24]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [25]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [26]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317

    [27]

    Le Roy R J 2007 LEVEL 8.0:A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (Waterloo:University of Waterloo Chemical Physics Research Report) CP-663

    [28]

    Kramida A E, Ryabtsev A N 2007 Phys. Scr. 76 544

    [29]

    Lidén K 1949 Ark. Fys. 1 229

    [30]

    Ryabtsev A N, Kink I, Awaya Y, Ekberg J O, Mannervik S, Ölme A, Martinson I 2005 Phys. Scr. 71 489

    [31]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC:National Bureau of Standard) p60

    [32]

    Okabe H (translated by Tang G Q, Bai Y B, Lu Z G) 1982 Photochemistry of Small Molecules (Changchun:Jilin People's Press) p40 (in Chinese) [冈田秀雄著(汤国庆, 白玉白, 陆志刚译) 1982 小分子光化学(长春:吉林人民出版社)第40页]

  • [1] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [2] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. Theoretical study of spectroscopic properties of 5 -S and 10 states and laser cooling for AlH+ cation. Acta Physica Sinica, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [3] Zhou Rui, Li Chuan-Liang, He Xiao-Hu, Qiu Xuan-Bing, Meng Hui-Yan, Li Ya-Chao, Lai Yun-Zhong, Wei Ji-Lin, Deng Lun-Hua. Spectroscopic properties of low-lying excited electronic states for CF- anion based on ab initio calculation. Acta Physica Sinica, 2017, 66(2): 023101. doi: 10.7498/aps.66.023101
    [4] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties of twelve -S states and twenty-three states of the CF+ cation. Acta Physica Sinica, 2016, 65(3): 033102. doi: 10.7498/aps.65.033102
    [5] Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping. Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+. Acta Physica Sinica, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [6] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lü, Lü Shu-Xia. Theoretical study on spectroscopic properties and predissociation mechanisms of the electronic states of carbon monofluoride. Acta Physica Sinica, 2015, 64(15): 153101. doi: 10.7498/aps.64.153101
    [7] Wang Jie-Min, Feng Heng-Qiang, Sun Jin-Feng, Shi De-Heng, Li Wen-Tao, Zhu Zun-Lüe. A study on spectroscopic parameters of X2+, A2 and B2+ low-lying electronic states of SiN radical. Acta Physica Sinica, 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [8] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [9] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [10] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [11] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation. Acta Physica Sinica, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [12] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [13] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [14] Shi De-Heng, Zhang Jin-Ping, Sun Jin-Feng, Liu Yu-Fang, Zhu Zun-Lüe. Elastic collision between S and D atoms at low temperatures and accurate analytic interaction potential and molecular constants of the SD(X2Π) radical. Acta Physica Sinica, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [15] Shi De-Heng, Liu Yu-Fang, Sun Jin-Feng, Zhang Jin-Ping, Zhu Zun-Lüe. Elastic collisions between O and D atoms at low temperature and accurate analytic potential energy function and molecular constants of the OD(X2Π) radical. Acta Physica Sinica, 2009, 58(4): 2369-2375. doi: 10.7498/aps.58.2369
    [16] Qian Qi, Yang Chuan-Lu, Gao Feng, Zhang Xiao-Yan. Multi-reference configuration interaction study on analytical potential energy function and spectroscopic constants of XOn(X=S,Cl; n=0,±1). Acta Physica Sinica, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
    [17] Ma Jing, Ding Lei, Gu Xue-Jun, Zheng Hai-Yang, Fang Li, Zhang Wei-Jun, Huang Chao-Qun, Wei Li-Xia, Yang Bin, Qi Fei. Photoionization studies of C2Cl4 using synchrotron radiation. Acta Physica Sinica, 2006, 55(1): 137-141. doi: 10.7498/aps.55.137
    [18] Ma Jing, Ding Lei, Gu Xue-Jun, Fang Li, Zhang Wei-Jun, Wei Li-Xia, Wang Jing, Yang Bin, Huang Chao-Qun, Qi Fei. Vacuum ultraviolet photoionization and photodissociation of C2HCl3 by synchrotron radiation. Acta Physica Sinica, 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [19] Mao Hua-Ping, Yang Lan-Rong, Wang Hong-Yan, Zhu Zheng-He, Tang Yong-Jian. Calculation of ionization potential and geometry of small yttrium metal clusters. Acta Physica Sinica, 2005, 54(11): 5126-5129. doi: 10.7498/aps.54.5126
    [20] Hu Zheng-Fa, Wang Zhen-Ya, Kong Xiang-Lei, Zhang Xian-Yi, Li Hai-Yang, Zhou Shi-Kang, Wang Juan, Wu Guo-Hua, Sheng Liu-Si, Zhang Yun-Wu. . Acta Physica Sinica, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
Metrics
  • Abstract views:  4408
  • PDF Downloads:  119
  • Cited By: 0
Publishing process
  • Received Date:  25 September 2017
  • Accepted Date:  03 January 2018
  • Published Online:  20 March 2019

/

返回文章
返回