Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-body fragmentation dynamics of OCS3+ induced by intermediate energy Ne4+ ion impact

Shen Li-Li Yan Shun-Cheng Ma Xin-Wen Zhu Xiao-Long Zhang Shao-Feng Feng Wen-Tian Zhang Peng-Ju Guo Da-Long Gao Yong Hai Bang Zhang Min Zhao Dong-Mei

Citation:

Three-body fragmentation dynamics of OCS3+ induced by intermediate energy Ne4+ ion impact

Shen Li-Li, Yan Shun-Cheng, Ma Xin-Wen, Zhu Xiao-Long, Zhang Shao-Feng, Feng Wen-Tian, Zhang Peng-Ju, Guo Da-Long, Gao Yong, Hai Bang, Zhang Min, Zhao Dong-Mei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The fragmentation experiment of OCS3+ induced by 56 keV/u Ne4+ ions is performed using reaction microscope, and the corresponding dissociation dynamics is investigated. By detecting the three fragment ions in coincidence, the three-dimensional (3D) momenta of all ions and the corresponding kinetic energy release (KER) distributions are reconstructed. It is found that a peak maximum of the KER distribution is locates at about 25 eV, and a shoulder structure appears around 18 eV. This result is consistent with previous heavy ion experimental results with different perturbation strengths. Taking into account that the KER distribution is related to the initial state population of the OCS3+ parent ions, it can be concluded that the perturbation strength is not a decisive parameter leading to the initial state population of OCS3+ ions. We also reconstruct the Newton diagram and Dalitz plot for the three-body fragmentation of OCS3+ ion, from which the sequential dissociation is distinguished from nonsequential dissociation clearly. By analyzing the kinetic energy of ions from each fragmentation process, we find that the KER peak at 25 eV corresponds to nonsequential dissociation process, but the shoulder at 18 eV arises from both sequential and nonsequential dissociation processes. This phenomenon suggests that the parent OCS3+ ions in ground state and low excitation states tend to fragment through sequential dissociation, while those in high excitation states tend to fragment through nosequential dissociation. Furthermore, we reconstruct the KER distributions in the second fragmentation step of sequential dissociation, whose peak maximum is at 6.2 eV, corresponding to X3, 1+ and 1 metastable states of CO2+ ion. A similar KER distribution is obtained for the second fragmentation step of the OCS4+ ion. By comparing our experimental results with previous ones, we conclude that the origin of sequential dissociation process is the existence of metastable state, and the reconstructed KER in the second step reflects the initial state information about the metastable state.
      Corresponding author: Yan Shun-Cheng, yanshuncheng@impcas.ac.cn;x.ma@impcas.ac.cn ; Ma Xin-Wen, yanshuncheng@impcas.ac.cn;x.ma@impcas.ac.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFA0402300) and the National Nature Science Foundation of China (Grant Nos. U1532129, 11304325).
    [1]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Döner R 2010 Phys. Rev. Lett. 104 103201

    [2]

    Wang E, Shan X, Shen Z J, Li X Y, Gong M M, Tang Y G, Chen X J 2015 Phys. Rev. A 92 062713

    [3]

    Singh R K, Lodha G S 2006 Phys. Rev. A 74 022708

    [4]

    Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B, Gong Q H 2013 Phys. Rev. Lett. 110 103601

    [5]

    Wang E, Shan X, Shen Z J, Gong M M, Tang Y G, Pan Y, Lau K C, Chen X J 2015 Phys. Rev. A 91 052711

    [6]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708

    [7]

    Jana M R, Ray B, Ghosh P N, Safvan C P 2010 J. Phys. B:At. Mol. Opt. Phys. 43 215207

    [8]

    Wales B, Motojima T, Matsumoto J, Long Z J, Liu W K, Shiromaru H, Sanderson J 2012 J. Phys. B:At. Mol. Opt. Phys. 45 045205

    [9]

    Ramadhan A, Wales B, Gauthier I, MacDonald M, Zuin L, Sanderson J 2015 J. Phys:Conf. Ser. 635 112137

    [10]

    Ramadhan A, Wales B, Karimi R, Gauthier I, MacDonald M, Zuin L, Sanderson J 2016 J. Phys. B:At. Mol. Opt. Phys. 49 215602

    [11]

    Wales B, Bisson é, Karimi R, Beaulieu S, Ramadhan A, Giguère M, Long Z J, Liu W K, Kieffer J C, Légaré F, Sanderson J 2014 J. Electron. Spectrosc. Relat. Phenom. 195 332

    [12]

    Shen Z J, Wang E, Gong M M, Shan X, Chen X J 2016 J. Chem. Phys. 145 234303

    [13]

    Jana M R, Ghosh P N, Ray B, Bapat B, Kushawaha R K, Saha K, Prajapati I A, Safvan C P 2014 Eur. Phys. J. D 68 250

    [14]

    Ding X Y, Haertelt M, Schlauderer S, Schuurman M S, Naumov A Y, Villeneuve D M, McKellar A R W, Corkum P B, Staudte A 2017 Phys. Rev. Lett. 118 153001

    [15]

    Lundqvist M, Baltzer P, Edvardsson D, Karlsson L, Wannberg B 1995 Phys. Rev. Lett. 75 1058

    [16]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303

    [17]

    Wang X, Zhang Y, Lu D, Lu G C, Wei B, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 Phys. Rev. A 90 062705

    [18]

    Guillemin R, Decleva P, Stener M, Bomme C, Marin T, Journel L, Marchenko T, Kushawaha R K, Jänkälä K, Trcera N, Bowen K P, Lindle D W, Piancastelli M N, Simon M 2015 Nat. Commun. 6 7166

    [19]

    Wu J, Kunitski M, Schmidt L Ph H, Jahnke T, Dörner R 2012 J. Chem. Phys. 137 104308

    [20]

    Xu S, Ma X, Ren X, Senftleben A, Pflger T, Dorn A, Ullrich J 2011 Phys. Rev. A 83 052702

    [21]

    Karimi R, Bisson é, Wales B, Beaulieu S, Giguère M, Long Z, Liu W K, Kieffer J C, Légaré F, Sanderson J 2013 J. Chem. Phys. 138 204311

    [22]

    Khan A, Misra D 2016 J. Phys. B:At. Mol. Opt. Phys. 49 055201

    [23]

    Zhu X L 2006 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences) (in Chinese)[朱小龙 2006 博士学位论文 (兰州:中国科学院近代物理研究所)]

  • [1]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Döner R 2010 Phys. Rev. Lett. 104 103201

    [2]

    Wang E, Shan X, Shen Z J, Li X Y, Gong M M, Tang Y G, Chen X J 2015 Phys. Rev. A 92 062713

    [3]

    Singh R K, Lodha G S 2006 Phys. Rev. A 74 022708

    [4]

    Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B, Gong Q H 2013 Phys. Rev. Lett. 110 103601

    [5]

    Wang E, Shan X, Shen Z J, Gong M M, Tang Y G, Pan Y, Lau K C, Chen X J 2015 Phys. Rev. A 91 052711

    [6]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708

    [7]

    Jana M R, Ray B, Ghosh P N, Safvan C P 2010 J. Phys. B:At. Mol. Opt. Phys. 43 215207

    [8]

    Wales B, Motojima T, Matsumoto J, Long Z J, Liu W K, Shiromaru H, Sanderson J 2012 J. Phys. B:At. Mol. Opt. Phys. 45 045205

    [9]

    Ramadhan A, Wales B, Gauthier I, MacDonald M, Zuin L, Sanderson J 2015 J. Phys:Conf. Ser. 635 112137

    [10]

    Ramadhan A, Wales B, Karimi R, Gauthier I, MacDonald M, Zuin L, Sanderson J 2016 J. Phys. B:At. Mol. Opt. Phys. 49 215602

    [11]

    Wales B, Bisson é, Karimi R, Beaulieu S, Ramadhan A, Giguère M, Long Z J, Liu W K, Kieffer J C, Légaré F, Sanderson J 2014 J. Electron. Spectrosc. Relat. Phenom. 195 332

    [12]

    Shen Z J, Wang E, Gong M M, Shan X, Chen X J 2016 J. Chem. Phys. 145 234303

    [13]

    Jana M R, Ghosh P N, Ray B, Bapat B, Kushawaha R K, Saha K, Prajapati I A, Safvan C P 2014 Eur. Phys. J. D 68 250

    [14]

    Ding X Y, Haertelt M, Schlauderer S, Schuurman M S, Naumov A Y, Villeneuve D M, McKellar A R W, Corkum P B, Staudte A 2017 Phys. Rev. Lett. 118 153001

    [15]

    Lundqvist M, Baltzer P, Edvardsson D, Karlsson L, Wannberg B 1995 Phys. Rev. Lett. 75 1058

    [16]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303

    [17]

    Wang X, Zhang Y, Lu D, Lu G C, Wei B, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 Phys. Rev. A 90 062705

    [18]

    Guillemin R, Decleva P, Stener M, Bomme C, Marin T, Journel L, Marchenko T, Kushawaha R K, Jänkälä K, Trcera N, Bowen K P, Lindle D W, Piancastelli M N, Simon M 2015 Nat. Commun. 6 7166

    [19]

    Wu J, Kunitski M, Schmidt L Ph H, Jahnke T, Dörner R 2012 J. Chem. Phys. 137 104308

    [20]

    Xu S, Ma X, Ren X, Senftleben A, Pflger T, Dorn A, Ullrich J 2011 Phys. Rev. A 83 052702

    [21]

    Karimi R, Bisson é, Wales B, Beaulieu S, Giguère M, Long Z, Liu W K, Kieffer J C, Légaré F, Sanderson J 2013 J. Chem. Phys. 138 204311

    [22]

    Khan A, Misra D 2016 J. Phys. B:At. Mol. Opt. Phys. 49 055201

    [23]

    Zhu X L 2006 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences) (in Chinese)[朱小龙 2006 博士学位论文 (兰州:中国科学院近代物理研究所)]

  • [1] Luo Yan, Yu Xuan, Lei Jian-Ting, Tao Chen-Yu, Zhang Shao-Feng, Zhu Xiao-Long, Ma Xin-Wen, Yan Shun-Cheng, Zhao Xiao-Hui. Fragmentation mechanism of methane dehydrogenation channel induced by extreme ultraviolet and high charge ions. Acta Physica Sinica, 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [2] Zhang Jiang-Feng, Tian Xiao-Han, Zhang Xiao-Ling, Meng Qing-Duan. Splashed gold bump dependence of cleavage of InSb chip under cyclic liquid nitrogen shocking tests. Acta Physica Sinica, 2022, 71(2): 028502. doi: 10.7498/aps.71.20211535
    [3] Li Tao-Tao, Yuan Hang, Wang Xing, Zhang Zhen, Guo Da-Long, Zhu Xiao-Long, Yan Shun-Cheng, Zhao Dong-Mei, Zhang Shao-Feng, Xu Shen-Yue, Ma Xin-Wen. Three-body fragmentation dynamics of C3H4 induced by 50-keV/u Ne8+ ion impact. Acta Physica Sinica, 2022, 71(9): 093401. doi: 10.7498/aps.71.20212202
    [4] Splashed gold bump dependence of cleavage of InSb chip under cyclic liquid nitrogen shocking tests. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211535
    [5] Zhang Min, Yan Shun-Cheng, Gao Yong, Zhang Shao-Feng, Ma Xin-Wen. Methods of calibrating kinetic energy release in dissociation process of molecular dications. Acta Physica Sinica, 2020, 69(20): 203401. doi: 10.7498/aps.69.20200901
    [6] Chen Xian, Zhang Jing, Tang Zhao-Huan. Molecular dynamics study of release mechanism of stress at Si/Ge interface on a nanoscale. Acta Physica Sinica, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [7] Huo Tian-Xu, Qiao Liang, Wang Tao, Li Fa-Shen. High-frequency magnetic properties of planar anisotropy carbonyl-iron particles(Retracted Article). Acta Physica Sinica, 2014, 63(16): 167503. doi: 10.7498/aps.63.167503
    [8] Li Ren-Shun, Zhou Yu-Lu, Zhang Bao-Ling, Deng Ai-Hong, Hou Qing. Thermal release of helium in materials inducedby random-walk mechanism. Acta Physica Sinica, 2011, 60(4): 046604. doi: 10.7498/aps.60.046604
    [9] Zhang Dong-Ling, Tang Qing-Bin, Yu Ben-Hai, Chen Dong. Nonsequential double ionization of argon atom below the recollision threshold. Acta Physica Sinica, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [10] Zhang Liang, Zhang Li-Feng, Wu Hai-Yan, Li Gang. The disturbance energy of Rossby wave in barotropic atmosphere. Acta Physica Sinica, 2010, 59(1): 44-53. doi: 10.7498/aps.59.44
    [11] Liu Hui-Ying, Zhu Zi-Zhong, Yang Yong. The reaction sequence of lithiation in Mg2Ge and the changes of its electronic structure. Acta Physica Sinica, 2008, 57(8): 5182-5190. doi: 10.7498/aps.57.5182
    [12] Liu Quan-Hui. The Cartesian momentum and the kinetic operators on curved surfaces. Acta Physica Sinica, 2008, 57(2): 674-677. doi: 10.7498/aps.57.674
    [13] Li Wen-Fei, Xu Hu-Shan, Zhang Feng-Shou, Li Jian-Feng, Chen Lie-Wen. . Acta Physica Sinica, 2002, 51(8): 1700-1705. doi: 10.7498/aps.51.1700
    [14] Ma Yu-Gang. . Acta Physica Sinica, 2000, 49(4): 654-664. doi: 10.7498/aps.49.654
    [15] GAO HAI-BIN, FANG DU-FEI, LU FU-QUAN. A STUDY OF C60+ COLLISIONAL FRAGMENTATION. Acta Physica Sinica, 1993, 42(12): 1910-1913. doi: 10.7498/aps.42.1910
    [16] DONG GUO-SHENG, LU CHUN-MING, LI ZHE-SHEN, WANG XUN. A STUDY OF SULFIDE TREATED InSb(111) SURFACES. Acta Physica Sinica, 1992, 41(6): 1036-1043. doi: 10.7498/aps.41.1036
    [17] YANG BING-LIANG, LIU BAI-YONG, Y. C. CHENG, H. WONG. STUDY ON HIGH-FIELD ELECTRON TRAPPING AND DETRAPPING PROPERTY IN THIN SiOx Ny FILMS. Acta Physica Sinica, 1991, 40(11): 1855-1861. doi: 10.7498/aps.40.1855
    [18] LIN JIN-GU, SU YANG, SHAN JUN, YANG JUN-HUI, FU KE-JIAN. ULTRAFINE POWDERS PRODUCED BY U-V LASER PHOTOLYS OF IRON PENTACARBONYL. Acta Physica Sinica, 1987, 36(9): 1194-1198. doi: 10.7498/aps.36.1194
    [19] . Acta Physica Sinica, 1975, 24(5): 366-371. doi: 10.7498/aps.24.366
    [20] SHEN HUNG-TAO, YEUAN TU-NAN, LEE YANG-KOU. ROTATIONAL SPECTRUM OF F19. Acta Physica Sinica, 1959, 15(8): 440-446. doi: 10.7498/aps.15.440
Metrics
  • Abstract views:  4922
  • PDF Downloads:  206
  • Cited By: 0
Publishing process
  • Received Date:  30 September 2017
  • Accepted Date:  11 December 2017
  • Published Online:  20 February 2019

/

返回文章
返回