Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of interaction between single-layer graphene on copper substrate and groove

Zhang Zhong-Qiang Jia Yu-Xia Guo Xin-Feng Ge Dao-Han Cheng Guang-Gui Ding Jian-Ning

Citation:

Characteristics of interaction between single-layer graphene on copper substrate and groove

Zhang Zhong-Qiang, Jia Yu-Xia, Guo Xin-Feng, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The two-dimensional material graphene is usually required to be transferred on the target substrate for some special applications, thus it is important to understand the adsorption properties in the graphene transferring and stripping processes. In this paper, the adsorption properties of a single-layered graphene on the grooved copper substrate are investigated using molecular dynamics simulations. The influence of geometric characteristic size of the groove on the adsorption force of the graphene deriving from the substrate is explored. For the fixed boundary conditions of the graphene, the adsorption force increases up to maximum and then decreases with reducing the distance between the graphene and substrate in the adsorbing process. The maximum adsorption force increases with groove depth increasing, with the groove width kept constant. Nevertheless, as the groove depth increases continuously, the adsorption force decreases greatly until the graphene cannot be adsorbed into the groove. In the graphene stripping process, the critical force that can strip the graphene completely from the substrate increases first and then decreases with the increase of the groove depth, which is also dependent on the steady adsorbing configuration of the system before stripping. With the groove depth kept constant, the magnitude of the adsorption force between the graphene and substrate is determined by the steady adsorbing configuration of the graphene in the groove region. The adsorption force versus the distance between the graphene and the grooved substrate can be divided into two groups according to whether the graphene can be adsorbed into the groove. In both adsorbing and stripping processes, the adsorption force for the graphene adsorbed into the groove is obviously larger than that for the graphene covered on the groove. Moreover, the influence of the boundary condition of the graphene on the adsorption properties in the groove region on the substrate is considered preliminarily. It indicates that the tensile plane stress within the graphene sheet induced by the fixed boundaries can hinder the graphene from being adsorbed into the groove. The findings may be helpful for the graphene-based fabrication of nano-apparatus and functionalized surface modification.
      Corresponding author: Zhang Zhong-Qiang, zhangzq@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472117, 11372298) and the National Science Foundation of Jiangsu Province, China (Grant No. BK20140556).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V 2004 Science 306 666

    [2]

    Geim A K 2009 Science 324 1530

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Damm C, Nacken T J, Peukert W 2015 Carbon 81 284

    [6]

    Oliveira Jr M H, Schumann T, Gargallo-Caballero R, Fromm F, Seyller T, Ramsteiner M, Trampert A, Geelhaar L, Lopes J M J, Riechert H 2013 Carbon 56 339

    [7]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [8]

    Li H, Fu Z B, Wang H B, Yi Y, Huang W, Zhang J C 2017 Acta Phys. Sin. 66 058101 (in Chinese) [李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成 2017 物理学报 66 058101]

    [9]

    Tyurnina A V, Okuno H, Pochet P, Dijon J 2016 Carbon 102 499

    [10]

    Kang J, Shin D, Bae S, Hong B H 2012 Nanoscale 4 5527

    [11]

    Bunch J S, Zande A M V D, Verbridge S S, Frank L W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490

    [12]

    Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543

    [13]

    He Y, Yu W, Ouyang G 2015 J. Phys. Chem. C 119 5420

    [14]

    Qiu W, Zhang Q P, Li Q, Xu C C, Guo J G 2017 Acta Phys. Sin. 66 166801 (in Chinese) [仇巍, 张启鹏, 李秋, 许超宸, 郭建刚 2017 物理学报 66 166801]

    [15]

    Budrikis Z, Zapperi S 2016 Nano Lett. 16 387

    [16]

    Na S R, Ji W S, Ruoff R S, Rui H, Liechti K M 2014 ACS Nano 8 11234

    [17]

    Kumar S, Parks D, Kamrin K 2016 ACS Nano 10 6552

    [18]

    Wood J D, Schmucker S W, Lyons A S, Pop E, Lyding J W 2011 Nano Lett. 11 4547

    [19]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Sinnott S B 2002 J. Phys.: Condens. Mater. 14 783

    [20]

    Hu C, Bai M, L J, Wang P, Zhang L, Li X 2014 Microfluid. Nanofluid. 17 581

    [21]

    Foils S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [22]

    Jones J E 1924 Proc. Roy. Soc. London Ser. A 106 441

    [23]

    Guo Y, Guo W 2006 Nanotechnology 17 4726

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V 2004 Science 306 666

    [2]

    Geim A K 2009 Science 324 1530

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Damm C, Nacken T J, Peukert W 2015 Carbon 81 284

    [6]

    Oliveira Jr M H, Schumann T, Gargallo-Caballero R, Fromm F, Seyller T, Ramsteiner M, Trampert A, Geelhaar L, Lopes J M J, Riechert H 2013 Carbon 56 339

    [7]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [8]

    Li H, Fu Z B, Wang H B, Yi Y, Huang W, Zhang J C 2017 Acta Phys. Sin. 66 058101 (in Chinese) [李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成 2017 物理学报 66 058101]

    [9]

    Tyurnina A V, Okuno H, Pochet P, Dijon J 2016 Carbon 102 499

    [10]

    Kang J, Shin D, Bae S, Hong B H 2012 Nanoscale 4 5527

    [11]

    Bunch J S, Zande A M V D, Verbridge S S, Frank L W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490

    [12]

    Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543

    [13]

    He Y, Yu W, Ouyang G 2015 J. Phys. Chem. C 119 5420

    [14]

    Qiu W, Zhang Q P, Li Q, Xu C C, Guo J G 2017 Acta Phys. Sin. 66 166801 (in Chinese) [仇巍, 张启鹏, 李秋, 许超宸, 郭建刚 2017 物理学报 66 166801]

    [15]

    Budrikis Z, Zapperi S 2016 Nano Lett. 16 387

    [16]

    Na S R, Ji W S, Ruoff R S, Rui H, Liechti K M 2014 ACS Nano 8 11234

    [17]

    Kumar S, Parks D, Kamrin K 2016 ACS Nano 10 6552

    [18]

    Wood J D, Schmucker S W, Lyons A S, Pop E, Lyding J W 2011 Nano Lett. 11 4547

    [19]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Sinnott S B 2002 J. Phys.: Condens. Mater. 14 783

    [20]

    Hu C, Bai M, L J, Wang P, Zhang L, Li X 2014 Microfluid. Nanofluid. 17 581

    [21]

    Foils S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [22]

    Jones J E 1924 Proc. Roy. Soc. London Ser. A 106 441

    [23]

    Guo Y, Guo W 2006 Nanotechnology 17 4726

Metrics
  • Abstract views:  5528
  • PDF Downloads:  155
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2017
  • Accepted Date:  17 November 2017
  • Published Online:  05 February 2018

/

返回文章
返回