Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetotransport in antidot arrays of three-dimensional topological insulators

Jing Yu-Mei Huang Shao-Yun Wu Jin-Xiong Peng Hai-Lin Xu Hong-Qi

Citation:

Magnetotransport in antidot arrays of three-dimensional topological insulators

Jing Yu-Mei, Huang Shao-Yun, Wu Jin-Xiong, Peng Hai-Lin, Xu Hong-Qi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Three-dimensional topological insulators are a new kind of quantum matter featured with gapless Dirac-like energy-dispersive surface states in the insulating bulk band gaps. However, in experiment, it is difficult to study quantum interference effect of surface states due to considerable contribution from bulk carriers in thick bulk material. To suppress such a bulk state contribution, nanostructures, such as ultra-thin films, nanowires and nanoribbons, have been employed in the study of quantum interference effects of the surface states. Here, we report on a magnetotransport measurement study of nanoscaled antidot array devices made from three-dimensional topological insulator Bi2Se3 thin films. The antidot arrays with hundreds of nanometers in diameter and edge-to-edge distance are fabricated in the thin films by utilizing the focused-ion beam technique, and the magnetotransport properties of the fabricated devices are measured at low temperatures. The results of the magnetotransport measurements for three representative devices, denoted as Dev-1 (with no antidot array fabricated), Dev-2 (with an antidot array of a relatively large period), and Dev-3 (with an antidot array of a relatively small period), are reported in this work. Weak anti-localization indicated by a sharp peak of conductivity at zero magnetic field is observed in all the three devices. Through theoretical fitting to the measurement data, the transport parameters in the three devices, such as spin-orbit coupling length Lso, phase coherence length L, and the number of conduction channels , are extracted. The extracted Lso value is tens of nanometers, which is consistent with the presence of the strong spin-orbit interaction in the Bi2Se3 thin film. The extracted L value is hundreds of nanometers and increases exponentially with temperature decreasing. It is found that the magnetotransports in Dev-1 and Dev-2 are well characterized by the coherent transport through a single conduction channel. For Dev-3, the magnetotransport at low temperatures is described by the coherent transport through two independent conduction channels, while at elevated temperatures the magnetotransport is dominantly described by the transport through one single conduction channel. Unlike the case where the transport occurs dominantly through a single conduction channel, the transport through two independent conduction channels in Dev-3 implies that at least one surface channel is present in the device.
      Corresponding author: Huang Shao-Yun, syhuang@pku.edu.cn;hqxu@pku.edu.cn ; Xu Hong-Qi, syhuang@pku.edu.cn;hqxu@pku.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300601, 2016YFA0300802, 2017YFA0303304, 2017YFA0204901) and the National Natural Science Foundation of China (Grant Nos. 91221202, 91421303, 11274021).
    [1]

    Moore J E 2010 Nature 464 194

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [3]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [4]

    Qi X L, Li R, Zang J, Zhang S C 2009 Science 323 1184

    [5]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [6]

    Berry M V 1984 Proc. R. Soc. London Ser. A 392 45

    [7]

    Taskin A A, Sasaki S, Segawa K, Ando Y 2012 Phys. Rev. Lett. 109 066803

    [8]

    Tian M, Ning W, Qu Z, Du H, Wang J, Zhang Y 2013 Sci. Rep. 3 1212

    [9]

    Hong S S, Zhang Y, Cha J J, Qi X L, Cui Y 2014 Nano Lett. 14 2815

    [10]

    Jauregui L A, Pettes M T, Rokhinson L P, Shi L, Chen Y P 2015 Sci. Rep. 5 8452

    [11]

    Jing Y, Huang S, Zhang K, Wu J, Guo Y, Peng H, Liu Z, Xu H Q 2016 Nanoscale 8 1879

    [12]

    Weiss D 1991 Adv. Solid State Phys. 31 341

    [13]

    Weiss D, Richter K, Menschig A, Bergmann R, Schweizer H, von Klitzing K, Weimann G 1993 Phys. Rev. Lett. 70 4118

    [14]

    Peng H L, Dang W H, Cao J, Chen Y L, Wu W, Zheng W S, Li H, Shen Z X, Liu Z F 2012 Nat. Chem. 4 281

    [15]

    Rabin O, Nielsch K, Dresselhaus M S 2006 Appl. Phys. A 82 471

    [16]

    Ghaemi P, Mong R S K, Moore J E 2010 Phys. Rev. Lett. 105 166603

    [17]

    Tkachov G, Hankiewicz E M 2011 Phys. Rev. B 84 035444

    [18]

    Hikami S, Larkin A, Nagaoka Y 1980 Prog. Theor. Phys. 63 707

    [19]

    Altshuler B L, Aronov A G, Khmelnitsky D E 1982 J. Phys. C 15 7367

    [20]

    Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J, Ong N P 2009 Phys. Rev. Lett. 103 246601

    [21]

    Kim Y S, Brahlek M, Bansal N, Edrey E, Kapilevich G A, Iida K, Tanimura M, Horibe Y, Cheong S W, Oh S 2011 Phys. Rev. B 84 073109

    [22]

    Lang M, He L, Xiu F, Yu X, Tang J, Wang Y, Kou X, Jiang W, Fedorov A V, Wang K L 2012 ACS Nano 6 295

    [23]

    Takagaki Y, Jenichen B, Jahn U, Ramsteiner M, Friedland K J 2012 Phys. Rev. B 85 115314

    [24]

    Chiu S P, Lin J J 2013 Phys. Rev. B 87 035122

  • [1]

    Moore J E 2010 Nature 464 194

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [3]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [4]

    Qi X L, Li R, Zang J, Zhang S C 2009 Science 323 1184

    [5]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [6]

    Berry M V 1984 Proc. R. Soc. London Ser. A 392 45

    [7]

    Taskin A A, Sasaki S, Segawa K, Ando Y 2012 Phys. Rev. Lett. 109 066803

    [8]

    Tian M, Ning W, Qu Z, Du H, Wang J, Zhang Y 2013 Sci. Rep. 3 1212

    [9]

    Hong S S, Zhang Y, Cha J J, Qi X L, Cui Y 2014 Nano Lett. 14 2815

    [10]

    Jauregui L A, Pettes M T, Rokhinson L P, Shi L, Chen Y P 2015 Sci. Rep. 5 8452

    [11]

    Jing Y, Huang S, Zhang K, Wu J, Guo Y, Peng H, Liu Z, Xu H Q 2016 Nanoscale 8 1879

    [12]

    Weiss D 1991 Adv. Solid State Phys. 31 341

    [13]

    Weiss D, Richter K, Menschig A, Bergmann R, Schweizer H, von Klitzing K, Weimann G 1993 Phys. Rev. Lett. 70 4118

    [14]

    Peng H L, Dang W H, Cao J, Chen Y L, Wu W, Zheng W S, Li H, Shen Z X, Liu Z F 2012 Nat. Chem. 4 281

    [15]

    Rabin O, Nielsch K, Dresselhaus M S 2006 Appl. Phys. A 82 471

    [16]

    Ghaemi P, Mong R S K, Moore J E 2010 Phys. Rev. Lett. 105 166603

    [17]

    Tkachov G, Hankiewicz E M 2011 Phys. Rev. B 84 035444

    [18]

    Hikami S, Larkin A, Nagaoka Y 1980 Prog. Theor. Phys. 63 707

    [19]

    Altshuler B L, Aronov A G, Khmelnitsky D E 1982 J. Phys. C 15 7367

    [20]

    Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J, Ong N P 2009 Phys. Rev. Lett. 103 246601

    [21]

    Kim Y S, Brahlek M, Bansal N, Edrey E, Kapilevich G A, Iida K, Tanimura M, Horibe Y, Cheong S W, Oh S 2011 Phys. Rev. B 84 073109

    [22]

    Lang M, He L, Xiu F, Yu X, Tang J, Wang Y, Kou X, Jiang W, Fedorov A V, Wang K L 2012 ACS Nano 6 295

    [23]

    Takagaki Y, Jenichen B, Jahn U, Ramsteiner M, Friedland K J 2012 Phys. Rev. B 85 115314

    [24]

    Chiu S P, Lin J J 2013 Phys. Rev. B 87 035122

  • [1] Zhang Shuai, Song Feng-Qi. Research progress of quantum Hall effect in topological insulator. Acta Physica Sinica, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [2] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [3] Xu Jia-Ling, Jia Li-Yun, Liu Chao, Wu Quan, Zhao Ling-Jun, Ma Li, Hou Deng-Lu. Band structure of topological insulator Li(Na)AuS. Acta Physica Sinica, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [4] Wang Hang-Tian, Zhao Hai-Hui, Wen Liang-Gong, Wu Xiao-Jun, Nie Tian-Xiao, Zhao Wei-Sheng. High-performance THz emission: From topological insulator to topological spintronics. Acta Physica Sinica, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [5] Xiang Tian, Cheng Liang, Qi Jing-Bo. Ultrafast charge and spin dynamics on topological insulators. Acta Physica Sinica, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [6] Jia Ding, Ge Yong, Yuan Shou-Qi, Sun Hong-Xiang. Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal. Acta Physica Sinica, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [7] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [8] Xu Nan, Zhang Yan. Topological edge states with skin effect in a trimerized non-Hermitian lattice. Acta Physica Sinica, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [9] Gao Yi-Xuan,  Zhang Li-Zhi,  Zhang Yu-Yang,  Du Shi-Xuan. Research progress of two-dimensional organic topological insulators. Acta Physica Sinica, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [10] Guan Tong, Teng Jing, Wu Ke-Hui, Li Yong-Qing. Linear magnetoresistance in topological insulator (Bi0.5Sb0.5)2Te3 thin films. Acta Physica Sinica, 2015, 64(7): 077201. doi: 10.7498/aps.64.077201
    [11] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [12] Wang Qing, Sheng Li. Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field. Acta Physica Sinica, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [13] Wei Pang, Li Kang, Feng Xiao, Ou Yun-Bo, Zhang Li-Guo, Wang Li-Li, He Ke, Ma Xu-Cun, Xue Qi-Kun. Growth of micro-devices of topological insulator thin films by molecular beam epitaxy on substrates pre-patterned with photolithography. Acta Physica Sinica, 2014, 63(2): 027303. doi: 10.7498/aps.63.027303
    [14] Chen Yan-Li, Peng Xiang-Yang, Yang Hong, Chang Sheng-Li, Zhang Kai-Wang, Zhong Jian-Xin. Stacking effects in topological insulator Bi2Se3:a first-principles study. Acta Physica Sinica, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [15] Li Ping-Yuan, Chen Yong-Liang, Zhou Da-Jin, Chen Peng, Zhang Yong, Deng Shui-Quan, Cui Ya-Jing, Zhao Yong. Research of thermal expansion coefficient of topological insulator Bi2Te3. Acta Physica Sinica, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [16] Wang Xiao-Tian, Dai Xue-Fang, Jia Hong-Ying, Wang Li-Ying, Liu Ran, Li Yong, Liu Xiao-Chuang, Zhang Xiao-Ming, Wang Wen-Hong, Wu Guang-Heng, Liu Guo-Dong. The band inversion and topological insulating state of Heusler alloys:X2RuPb (X=Lu, Y). Acta Physica Sinica, 2014, 63(2): 023101. doi: 10.7498/aps.63.023101
    [17] Wang Huai-Qiang, Yang Yun-You, Ju Yan, Sheng Li, Xing Ding-Yu. Phase transition of ultrathin Bi2Se3 film sandwiched between ferromagnetic insulators. Acta Physica Sinica, 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [18] Zeng Lun-Wu, Song Run-Xia. Inducing magnetic monopole in conductor and topological insulator by point charge. Acta Physica Sinica, 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [19] Zhang Xiao-Ming, Liu Guo-Dong, Du Yin, Liu En-Ke, Wang Wen-Hong, Wu Guang-Heng, Liu Zhong-Yuan. Investigation on regulating the topological electronic structure of the half-Heusler compound LaPtBi. Acta Physica Sinica, 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [20] Zeng Lun-Wu, Zhang Hao, Tang Zhong-Liang, Song Run-Xia. Electromagnetic wave scattering by a topological insulator prolate spheroid particle. Acta Physica Sinica, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
Metrics
  • Abstract views:  5929
  • PDF Downloads:  270
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2017
  • Accepted Date:  06 December 2017
  • Published Online:  20 February 2019

/

返回文章
返回