Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of laser diode array pump coupling system based on microlens array

Yan Xiong-Wei Wang Zhen-Guo Jiang Xin-Ying Zheng Jian-Gang Li Min Jing Yu-Feng

Citation:

Analysis of laser diode array pump coupling system based on microlens array

Yan Xiong-Wei, Wang Zhen-Guo, Jiang Xin-Ying, Zheng Jian-Gang, Li Min, Jing Yu-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to improve the performance of laser diode (LD) array pumping field in high-power solid state laser, an LD array pumping coupling system based on microlens array is used to achieve a high-uniformity pumping source with a longer transmission distance. The homogenizer has two structures based on microlens array, which are called diffracting homogenizer and imaging homogenizer. In this paper, we mainly study imaging microlens array due to its advantages of simple structure, better output homogeneity, flexibility of changing pumping field size, and insensitive to change in the input beam. First, the mathematical expression of the intensity distribution of target surface is derived based on the theory of geometrical optical. According to the geometrical optical formula, we obtain the relationship between the intensity distribution of target surface and system parameters, i.e., maximum incident angle of LD array, the distance between two microlens arrays, and the aperture and focal length of microlens. The boundary condition of microlens Fresnel number is derived based on the LD array beam parameters. Second, the influence of the number of microlens array elements on the output field homogeneity is studied theoreti-cally by the mathematical statistics method. As the input beam is considered to be divided randomly, the central limit theorem is employed to derive the mathematical expression of calculating the integrated output field non-homogeneity. The formula shows that the non-homogeneity is in inverse proportion to the root of the number of microlens array elements and the related maximum and minimum value of input field intensity distribution. And the spatial period of microlens array is designed to be unrelated to the spatial period of LD array to reduce the coherence of LD beam. According to the luminescence field parameters of an LD array consisting of 25 bars, an LD coupling imaging microlens array homogenizer test system is designed and constructed based on the theoretical analysis above. Another contrast system with a different microlens array which is not optimized is constructed at the same time. The coupling characteristics of two coupling systems with different microlens arrays are compared. The simulation and experimental test are carried out. The experimental result accords well with the simulated result, and thus proving the correctness of the theoretical studies. The coupling system with optimized microlens array shows better homogeneous effect with an output field non-homogeneity of 7.9%, and a coupling efficiency of 90.7%, proving the feasibility of the system for LD array pumping field homogenization.
      Corresponding author: Zheng Jian-Gang, zjg8861@gmail.com
    • Funds: Project supported by the Key Laboratory of Science and Technology on High Energy Laser, CAEP (Grant No. HEL2017-05-2).
    [1]

    Deri R J 2011 Office of Scientific Technical Information Technical Reports LLNL-TR-465931

    [2]

    Diamant R, Berk Y, Cohen S, Klumel G, Levy M, Openhaim Y, Peleg O, Dan Y, Karni Y 2011 Proc. SPIE 8039 80390E

    [3]

    Liu Y, Fang G Z, Ma X Y, Xiao J W 2002 Laser Infrared 32 139 (in Chinese) [刘媛, 方高瞻, 马骁宇, 肖建伟 2002 激光与红外 32 139]

    [4]

    Wu H S, Yin Z G, Li X N 2006 Opt. Instrum. 28 23 (in Chinese) [吴海生, 尹贵增, 李湘宁 2006 光学仪器 28 23]

    [5]

    Wang Z G, Jiang X Y, Zheng J G, Yan X W, Li M Z, Li M 2017 High Power Laser Particle Beams 29 091002

    [6]

    Fu R, Wang G, Wang Z, Ba E, Mu G, Hu X H 1998 Appl. Opt. 37 4000

    [7]

    Golnabi H 2004 Opt. Laser Technol. 36 1

    [8]

    Gao H Y, Fu R L, Qin H, Shi X G 2006 J. Optoelectron. Laser 17 396 (in Chinese) [郜洪云, 傅汝廉, 秦华, 史新刚 2006 光电子激光 17 396]

    [9]

    Jia W, Hu Y M, Li M Z, Luo Y M, Zhang X M 2004 Chin. J. Lasers 31 939 (in Chinese) [贾伟, 胡永明, 李明中, 罗亦明, 张小民 2004 中国激光 31 939]

    [10]

    Liu X J, Fu R L, Qin H, Shi X G, Zhuo R R, Gao H Y 2006 Opt. Precision Eng. 14 167 (in Chinese) [刘晓娟, 傅汝廉, 秦华, 史新刚, 卓然然, 郜洪云 2006 光学精密工程 14 167]

    [11]

    Beach R J 1996 Appl. Opt. 35 2005

    [12]

    Han K Z, Liu X J, Ge Y L, Geng X, Wan Y F, Fu S G, He J L 2012 Chin. J. Lasers 39 0302003 (in Chinese) [韩克祯, 刘晓娟, 葛筱璐, 耿雪, 万云芳, 付圣贵, 何京良 2012 中国激光 39 0302003]

    [13]

    Jia W W, Wang Y F, Huang F 2008 Acta Photon. Sin. 37 1756 (in Chinese) [贾文武, 汪岳峰, 黄峰 2008 光子学报 37 1756]

    [14]

    Jia W W, Wang Y F, Lei C Q, Huang F 2012 Laser Technol. 36 93 (in Chinese) [贾文武, 汪岳峰, 雷呈强, 黄峰 2012 激光技术 36 93]

    [15]

    Buettner A, Zeitner U D 2002 Opt. Eng. 41 2393

    [16]

    Harder I, Lano M, Lindlein N, Schwider J 2004 Proc. SPIE 5456 99

    [17]

    Schreiber P, Dannberg P, Hoefer B, Beckert E 2005 Proc. SPIE 5876 58760K

    [18]

    Wippermann F, Zeitner U D, Dannberg P, Bruer A, Sinzinger S 2007 Opt. Express 15 6218

    [19]

    Huang F, Jia W W, Wang Y F, Dong W 2010 Infrared Laser Eng. 39 61 (in Chinese) [黄峰, 贾文武, 汪岳峰, 董伟 2010 红外与激光工程 39 61]

    [20]

    Huang F, Jia W W, Wang Y F, Shang H, Guo S F 2010 Laser Infrared 40 44 (in Chinese) [黄峰, 贾文武, 汪岳峰, 尚浩, 郭双飞 2010 激光与红外 40 44]

    [21]

    Yin Z Y, Wang Y F, Jia W W, Huang F, Lei C Q, Zhang L L 2012 Laser Infrared 42 119 (in Chinese) [殷智勇, 汪岳峰, 贾文武, 黄峰, 强继平, 雷呈强, 张琳琳 2012 激光与红外 42 119]

    [22]

    Yin Z Y, Wang Y F, Jia W W, Yang X J, Lei C Q, Qiang J P 2012 Chin. J. Lasers 39 0702007 (in Chinese) [殷智勇, 汪岳峰, 贾文武, 杨晓杰, 雷呈强, 强继平 2012 中国激光 39 0702007]

    [23]

    Liu Z H, Shi Z D, Yang H, Li G J, Fang L, Zhou C X 2014 Infrared Laser Eng. 43 2092 (in Chinese) [刘志辉, 石振东, 杨欢, 李国俊, 方亮, 周崇喜 2014 红外与激光工程 43 2092]

    [24]

    Liu Z H, Yang H, Shi Z D, Li G J, Fang L, Zhou C X 2014 Chin. J. Lasers 41 0102005 (in Chinese) [刘志辉, 杨欢, 石振东, 李国俊, 方亮, 周崇喜 2014 中国激光 41 0102005]

    [25]

    Yu J Q, Yin S Y, Yin Z Y, Dong X C, Sun X H, Gou J, Du C L 2014 Opto-Electron. Eng. 41 80 (in Chinese) [余金清, 尹韶云, 殷智勇, 董小春, 孙秀辉, 苟健, 杜春雷 2014 光电工程 41 80]

    [26]

    Lei C Q, Wang Y F, Yin Z Y, Yin S Y, Sun X H, Du C L 2015 High Power Laser Particle Beams 27 091002 (in Chinese) [雷呈强, 汪岳峰, 殷智勇, 尹韶云, 孙秀辉, 杜春雷 2015 强激光与粒子束 27 091002]

    [27]

    Lei C Q, Wang Y F, Yin Z Y, Yin S Y, Sun X H, Zhou Q 2015 Acta Opt. Sin. 35 114005 (in Chinese) [雷呈强, 汪岳峰, 殷智勇, 尹韶云, 孙秀辉, 周全 2015 光学学报 35 114005]

  • [1]

    Deri R J 2011 Office of Scientific Technical Information Technical Reports LLNL-TR-465931

    [2]

    Diamant R, Berk Y, Cohen S, Klumel G, Levy M, Openhaim Y, Peleg O, Dan Y, Karni Y 2011 Proc. SPIE 8039 80390E

    [3]

    Liu Y, Fang G Z, Ma X Y, Xiao J W 2002 Laser Infrared 32 139 (in Chinese) [刘媛, 方高瞻, 马骁宇, 肖建伟 2002 激光与红外 32 139]

    [4]

    Wu H S, Yin Z G, Li X N 2006 Opt. Instrum. 28 23 (in Chinese) [吴海生, 尹贵增, 李湘宁 2006 光学仪器 28 23]

    [5]

    Wang Z G, Jiang X Y, Zheng J G, Yan X W, Li M Z, Li M 2017 High Power Laser Particle Beams 29 091002

    [6]

    Fu R, Wang G, Wang Z, Ba E, Mu G, Hu X H 1998 Appl. Opt. 37 4000

    [7]

    Golnabi H 2004 Opt. Laser Technol. 36 1

    [8]

    Gao H Y, Fu R L, Qin H, Shi X G 2006 J. Optoelectron. Laser 17 396 (in Chinese) [郜洪云, 傅汝廉, 秦华, 史新刚 2006 光电子激光 17 396]

    [9]

    Jia W, Hu Y M, Li M Z, Luo Y M, Zhang X M 2004 Chin. J. Lasers 31 939 (in Chinese) [贾伟, 胡永明, 李明中, 罗亦明, 张小民 2004 中国激光 31 939]

    [10]

    Liu X J, Fu R L, Qin H, Shi X G, Zhuo R R, Gao H Y 2006 Opt. Precision Eng. 14 167 (in Chinese) [刘晓娟, 傅汝廉, 秦华, 史新刚, 卓然然, 郜洪云 2006 光学精密工程 14 167]

    [11]

    Beach R J 1996 Appl. Opt. 35 2005

    [12]

    Han K Z, Liu X J, Ge Y L, Geng X, Wan Y F, Fu S G, He J L 2012 Chin. J. Lasers 39 0302003 (in Chinese) [韩克祯, 刘晓娟, 葛筱璐, 耿雪, 万云芳, 付圣贵, 何京良 2012 中国激光 39 0302003]

    [13]

    Jia W W, Wang Y F, Huang F 2008 Acta Photon. Sin. 37 1756 (in Chinese) [贾文武, 汪岳峰, 黄峰 2008 光子学报 37 1756]

    [14]

    Jia W W, Wang Y F, Lei C Q, Huang F 2012 Laser Technol. 36 93 (in Chinese) [贾文武, 汪岳峰, 雷呈强, 黄峰 2012 激光技术 36 93]

    [15]

    Buettner A, Zeitner U D 2002 Opt. Eng. 41 2393

    [16]

    Harder I, Lano M, Lindlein N, Schwider J 2004 Proc. SPIE 5456 99

    [17]

    Schreiber P, Dannberg P, Hoefer B, Beckert E 2005 Proc. SPIE 5876 58760K

    [18]

    Wippermann F, Zeitner U D, Dannberg P, Bruer A, Sinzinger S 2007 Opt. Express 15 6218

    [19]

    Huang F, Jia W W, Wang Y F, Dong W 2010 Infrared Laser Eng. 39 61 (in Chinese) [黄峰, 贾文武, 汪岳峰, 董伟 2010 红外与激光工程 39 61]

    [20]

    Huang F, Jia W W, Wang Y F, Shang H, Guo S F 2010 Laser Infrared 40 44 (in Chinese) [黄峰, 贾文武, 汪岳峰, 尚浩, 郭双飞 2010 激光与红外 40 44]

    [21]

    Yin Z Y, Wang Y F, Jia W W, Huang F, Lei C Q, Zhang L L 2012 Laser Infrared 42 119 (in Chinese) [殷智勇, 汪岳峰, 贾文武, 黄峰, 强继平, 雷呈强, 张琳琳 2012 激光与红外 42 119]

    [22]

    Yin Z Y, Wang Y F, Jia W W, Yang X J, Lei C Q, Qiang J P 2012 Chin. J. Lasers 39 0702007 (in Chinese) [殷智勇, 汪岳峰, 贾文武, 杨晓杰, 雷呈强, 强继平 2012 中国激光 39 0702007]

    [23]

    Liu Z H, Shi Z D, Yang H, Li G J, Fang L, Zhou C X 2014 Infrared Laser Eng. 43 2092 (in Chinese) [刘志辉, 石振东, 杨欢, 李国俊, 方亮, 周崇喜 2014 红外与激光工程 43 2092]

    [24]

    Liu Z H, Yang H, Shi Z D, Li G J, Fang L, Zhou C X 2014 Chin. J. Lasers 41 0102005 (in Chinese) [刘志辉, 杨欢, 石振东, 李国俊, 方亮, 周崇喜 2014 中国激光 41 0102005]

    [25]

    Yu J Q, Yin S Y, Yin Z Y, Dong X C, Sun X H, Gou J, Du C L 2014 Opto-Electron. Eng. 41 80 (in Chinese) [余金清, 尹韶云, 殷智勇, 董小春, 孙秀辉, 苟健, 杜春雷 2014 光电工程 41 80]

    [26]

    Lei C Q, Wang Y F, Yin Z Y, Yin S Y, Sun X H, Du C L 2015 High Power Laser Particle Beams 27 091002 (in Chinese) [雷呈强, 汪岳峰, 殷智勇, 尹韶云, 孙秀辉, 杜春雷 2015 强激光与粒子束 27 091002]

    [27]

    Lei C Q, Wang Y F, Yin Z Y, Yin S Y, Sun X H, Zhou Q 2015 Acta Opt. Sin. 35 114005 (in Chinese) [雷呈强, 汪岳峰, 殷智勇, 尹韶云, 孙秀辉, 周全 2015 光学学报 35 114005]

  • [1] Liu Yanxin, Wang Zhihui, Guan Shijun, Wang Qinxia, Zhang Pengfei, Li Gang, Zhang Tiancai. Experimental realization of one-dimensional single-atom array based on microscale optical dipole traps. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240135
    [2] Gu Tong-Kai, Wang Lan-Lan, Guo Yang, Jiang Wei-Tao, Shi Yong-Sheng, Yang Shuo, Chen Jin-Ju, Liu Hong-Zhong. Realization of reconfigurable super-resolution imaging by liquid microlens arrays integrated on light disk. Acta Physica Sinica, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [3] Xu Xin, Jin Xue-Ying, Gao Hao-Ran, Cheng Jie, Lu Yang, Chen Dong, Yu Lian-Dong. Analysis of frequency tuning process of dual coupled optical microcavities. Acta Physica Sinica, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [4] Zhang Shu-He, Shao Meng, Zhang Sheng-Zhao, Zhou Jin-Hua. Light rays in Fourier domain. Acta Physica Sinica, 2019, 68(21): 214202. doi: 10.7498/aps.68.20190839
    [5] Cao Chao, Liao Zhi-Yuan, Bai Yu, Fan Zhen-Jie, Liao Sheng. Initial configuration design of off-axis reflective optical system based on vector aberration theory. Acta Physica Sinica, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [6] Wang Hong-Liang, Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu, Wang Wei-Biao. Design and analysis of medium wave infrared miniature static Fourier transform spectrometer. Acta Physica Sinica, 2018, 67(6): 060702. doi: 10.7498/aps.67.20172599
    [7] Zhang Shu-He, Shao Meng, Zhou Jin-Hua. Structured beam designed by ray-optical Poincaré sphere method and its propagation properties. Acta Physica Sinica, 2018, 67(22): 224204. doi: 10.7498/aps.67.20180918
    [8] Zhou Ning, Zhang Lan-Zhi, Li Dong-Wei, Chang Jun-Wei, Wang Bi-Yi, Tang Lei, Lin Jing-Quan, Hao Zuo-Qiang. Filamentation and supercontinuum emission with flattened femtosecond laser beam by use of microlens array in fused silica. Acta Physica Sinica, 2018, 67(17): 174205. doi: 10.7498/aps.67.20180306
    [9] Zhang Xiao-Hui, Zhang Shuang, Sun Chun-Sheng. Modeling of Gaussian laser beam reflection from rough sea surface. Acta Physica Sinica, 2016, 65(14): 144204. doi: 10.7498/aps.65.144204
    [10] Lü Xiang-Bo, Zhu Jing, Yang Bao-Xi, Huang Hui-Jie. An approach for calculating the optical structure based on ybar-y diagram. Acta Physica Sinica, 2015, 64(11): 114201. doi: 10.7498/aps.64.114201
    [11] Wang Shu-Ying, Zhang Hai-Jun, Zhang Dong-Xian. Location-free optical microscopic imaging method with high-resolution based on microsphere superlenses. Acta Physica Sinica, 2013, 62(3): 034207. doi: 10.7498/aps.62.034207
    [12] Sun Jin-Xia, Pan Guo-Qing, Liu Ying. Third-order aberrations of a plane symmetric optical system. Acta Physica Sinica, 2013, 62(9): 094203. doi: 10.7498/aps.62.094203
    [13] Zhao Dong-Mei, Li Zhi-Gang, Guo Yan-Qiang, Li Gang, Wang Jun-Min, Zhang Tian-Cai. Photon statistics of squeezed vacuum field from optical parametric oscillator far below the threshold. Acta Physica Sinica, 2010, 59(9): 6231-6236. doi: 10.7498/aps.59.6231
    [14] Wu Feng-Tie, Jiang Xin-Guang, Liu Bin, Qiu Zhen-Xing. Geometric optics analysis on self-reconstruction of the nondiffracting beam generated from an axicon. Acta Physica Sinica, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [15] Deng Qing-Hua, Peng Han-Sheng, Sui Zhan, Ding Lei, Li Ming-Zhong, Wang Jian-Jun, Tang Jun, Luo Yi-Ming, Lin Hong-Huan, Zhang Rui, Deng Ying, Lu Zhen-Hua. Simulation on a new coupling method of laser diode array end-pumped large-aperture amplifiers. Acta Physica Sinica, 2008, 57(10): 6340-6347. doi: 10.7498/aps.57.6340
    [16] Xiong Zhi_Ming, Zhang Qing_Chuan, Chen Da_Peng, Wu Xiao_Ping, Guo Zhe_Ying, Dong Feng_Liang, Miao Zheng_Yu, Li Chao_Bo. Optical-readout micro-cantilever array IR imaging system and performance analysis. Acta Physica Sinica, 2007, 56(5): 2529-2536. doi: 10.7498/aps.56.2529
    [17] Cheng Guang-Hua, Wang Yi-Shan, Liu Qin, Zhao Wei, Chen Guo-Fu. Study of three-dimensional storage by parallel writing in PMMA with femtosecond laser pulses. Acta Physica Sinica, 2004, 53(2): 436-440. doi: 10.7498/aps.53.436
    [18] LI XIN-ZHOU, YUAN NING-YI, LIU DAO-JUN, HAO JIAN-GANG. EXTERIOR GRAVITATIONAL PERTURBATION ON GENERALIZED SCHWARZSCHILD GEOMETRY. Acta Physica Sinica, 2000, 49(6): 1031-1034. doi: 10.7498/aps.49.1031
    [19] CHEN YAN-SONG, ZHENG SHI-HAI, LI DE-HUA. TWO-DIMENSIONAL OPTICAL GEOMETRIC MOMENT TRANSFORM. Acta Physica Sinica, 1991, 40(10): 1601-1606. doi: 10.7498/aps.40.1601
    [20] CHEN SHI-KANG. THE THEORY OF LINEAR TRANSPORT COEFFICIENTS IN QUANTUM STATISTICS. Acta Physica Sinica, 1963, 19(7): 456-465. doi: 10.7498/aps.19.456
Metrics
  • Abstract views:  5245
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  19 November 2017
  • Accepted Date:  04 June 2018
  • Published Online:  20 September 2019

/

返回文章
返回