Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broadband Rydberg atom-based radio-frequency field sensor

Jiao Yue-Chun Zhao Jian-Ming Jia Suo-Tang

Citation:

Broadband Rydberg atom-based radio-frequency field sensor

Jiao Yue-Chun, Zhao Jian-Ming, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Significant progress has been made in atom-based measurements of length, time, gravity and electromagnetic fields in recently years. Rydberg atom-based microwave electric field measurement, using electromagnetically induced transparency (EIT) in room temperature alkali-metal vapors, has been extensively investigated and aroused the broad interest. This approach may establish a new standard for the measurements of microwave (MW) and radio frequency (RF) electric fields.In this review, we describe the work on a new method of measuring electric fields based on quantum interference by using either cesium or rubidium atoms contained in a dielectric vapor cell. Rydberg atoms with principal quantum number n >>1 have large direct current (DC) polarizabilities and microwave transition dipole moments, thereby making them extremely sensitive to external electric fields. Using the Rydberg three-level EIT to detect the level splitting and shift that is induced by the external field, we can realize a rapid and robust self-calibration method of measuring the electric field in a frequency range from 0.01 GHz to 1000 GHz. For the MW electric field (frequency range > 1 GHz), the MW field causes the Rydberg states to split, known as an Autler-Townes splitting (A-T) effect when the applied microwave can resonate with adjacent Rydberg states. The MW coupled A-T splitting is proportional to the applied electric field strength, from which the field strength is measured. Using the EIT window, a high sensitivity of 3 μV·cm-1·Hz-1/2 and small electric field of 1 μV/cm are expected to be achieved with a modest setup, and the limitations of the sensitivity are also addressed in the review. For the RF field at frequency mj EIT lines, and avoided crossings formed with the fine-structure levels of equal mj and different J's, which is used to calibrate and measure the RF field amplitude. On the other hand, the dependence of the EIT-line strength on the RF field polarization provides a fast and robust polarization measurement of RF fields based on matching experimental data with a theoretical simulation. The measurements of minimum strengths and sensitivity of RF fields based on Rydberg atoms are one order magnitude below the values obtained by traditional antenna methods. The atom-based field measurement paves the way for determining fields through calibration-free, invariable atomic properties and miniaturization. We also propose its various potential applications in the future.
      Corresponding author: Zhao Jian-Ming, zhaojm@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61475090, 61675123, 61775124), the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Key Program of the National Natural Science Foundation of China (Grant No. 11434007), and Shanxi "1331 Project" Key Subjects Construction.
    [1]

    Kanda M, Orr R D 1986 IEEE Trans. Antenn. Propag. 35 33

    [2]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antenn. Propag. 62 6169

    [3]

    Kanda M 1993 IEEE Trans. Antenn. Propag. 41 1349

    [4]

    Sriram S, Kingsley S A, Boyd J T 1993 US patent 5 267 336 [1993-11-30]

    [5]

    Kanda M 1994 IEEE Trans. Electromagn. Compat. 36 261

    [6]

    Hall J L 2006 Rev. Mod. Phys. 78 1279

    [7]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nat. 506 71

    [8]

    Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004

    [9]

    Patton B, Versolato O O, Hovde D C, Corsini E, Higbie J M, Budker D 2012 Appl. Phys. Lett. 101 083502

    [10]

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702 (in Chinese) [黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 物理学报 64 160702]

    [11]

    Fan H, Kumar S, Sedlacek J, Kubler H, Karimkash S, Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001

    [12]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [13]

    Zhang H, Zhang L, Wang L, Bao S, Zhao J, Jia S 2014 Phys. Rev. A 90 043849

    [14]

    Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [15]

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201]

    [16]

    Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G 2014 Phys. Rev. A 90 043419

    [17]

    Kumar S, Fan H, Kbler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981

    [18]

    Kumar S, Fan H, Kbler H, Jahangiri A J, Shaffer J P 2017 Opt. Exp. 25 8625

    [19]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithe G 2017 J. Appl. Phys. 121 233106

    [20]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102

    [21]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [22]

    Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016 Appl. Phys. Lett. 108 174101

    [23]

    Anderson D A, Raithel G 2017 Appl. Phys. Lett. 111 053504

    [24]

    Sedlacek J, Schwettmann A, Kbler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001

    [25]

    Fan H Q, Kumar S, Sheng J T, Shaffer J P 2015 Phys. Rev. Appl. 4 044015

    [26]

    Zhu X B, Zhang H, Feng Z G, Zhang L J, Li C Y, Zhao J M, Jia S T 2010 Acta Phys. Sin. 59 2401 (in Chinese) [朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂 2010 物理学报 59 2401]

    [27]

    Bason M G, Tanasittikoso M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015

    [28]

    Veit C, Epple G, Kbler H, Euser T G, Russell P St J, Lw R 2016 J. Phys. B: At. Mol. Opt. Phys. 49 134005

    [29]

    Yoshida S, Reinhold C O, Burgdörfer J, Ye S, Dunning F B 2012 Phys. Rev. A 86 043415

    [30]

    Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017

    [31]

    Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832

    [32]

    Yang Z W, Jiao Y C, Han X X, Zhao J M, Jia S T 2017 Acta Phys. Sin. 66 093202 (in Chinese) [杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂 2017 物理学报 66 093202]

    [33]

    Jiao Y C, Hao L P, Han X X, Bai S Y, Raithel G, Zhao J M, Jia S T 2017 Phys. Rev. Appl. 8 014028

    [34]

    Kitching J, Knappe S, Donley E A 2011 IEEE Sens. J. 11 1749

    [35]

    Kbler H, Shaffer J P, Baluksian T, Lw R, Pfau T 2010 Nat. Photon. 4 112

    [36]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp38-49

    [37]

    Osterwalder A, Merkt F 1999 Phys. Rev. Lett. 82 1831

    [38]

    Mack M, Karlewski F, Hattermann H, Hockh S, Jessen F, Cano D, Fortagh J 2011 Phys. Rev. A 83 052515

  • [1]

    Kanda M, Orr R D 1986 IEEE Trans. Antenn. Propag. 35 33

    [2]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antenn. Propag. 62 6169

    [3]

    Kanda M 1993 IEEE Trans. Antenn. Propag. 41 1349

    [4]

    Sriram S, Kingsley S A, Boyd J T 1993 US patent 5 267 336 [1993-11-30]

    [5]

    Kanda M 1994 IEEE Trans. Electromagn. Compat. 36 261

    [6]

    Hall J L 2006 Rev. Mod. Phys. 78 1279

    [7]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nat. 506 71

    [8]

    Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004

    [9]

    Patton B, Versolato O O, Hovde D C, Corsini E, Higbie J M, Budker D 2012 Appl. Phys. Lett. 101 083502

    [10]

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702 (in Chinese) [黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 物理学报 64 160702]

    [11]

    Fan H, Kumar S, Sedlacek J, Kubler H, Karimkash S, Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001

    [12]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [13]

    Zhang H, Zhang L, Wang L, Bao S, Zhao J, Jia S 2014 Phys. Rev. A 90 043849

    [14]

    Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [15]

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201]

    [16]

    Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G 2014 Phys. Rev. A 90 043419

    [17]

    Kumar S, Fan H, Kbler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981

    [18]

    Kumar S, Fan H, Kbler H, Jahangiri A J, Shaffer J P 2017 Opt. Exp. 25 8625

    [19]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithe G 2017 J. Appl. Phys. 121 233106

    [20]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102

    [21]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [22]

    Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016 Appl. Phys. Lett. 108 174101

    [23]

    Anderson D A, Raithel G 2017 Appl. Phys. Lett. 111 053504

    [24]

    Sedlacek J, Schwettmann A, Kbler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001

    [25]

    Fan H Q, Kumar S, Sheng J T, Shaffer J P 2015 Phys. Rev. Appl. 4 044015

    [26]

    Zhu X B, Zhang H, Feng Z G, Zhang L J, Li C Y, Zhao J M, Jia S T 2010 Acta Phys. Sin. 59 2401 (in Chinese) [朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂 2010 物理学报 59 2401]

    [27]

    Bason M G, Tanasittikoso M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015

    [28]

    Veit C, Epple G, Kbler H, Euser T G, Russell P St J, Lw R 2016 J. Phys. B: At. Mol. Opt. Phys. 49 134005

    [29]

    Yoshida S, Reinhold C O, Burgdörfer J, Ye S, Dunning F B 2012 Phys. Rev. A 86 043415

    [30]

    Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017

    [31]

    Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832

    [32]

    Yang Z W, Jiao Y C, Han X X, Zhao J M, Jia S T 2017 Acta Phys. Sin. 66 093202 (in Chinese) [杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂 2017 物理学报 66 093202]

    [33]

    Jiao Y C, Hao L P, Han X X, Bai S Y, Raithel G, Zhao J M, Jia S T 2017 Phys. Rev. Appl. 8 014028

    [34]

    Kitching J, Knappe S, Donley E A 2011 IEEE Sens. J. 11 1749

    [35]

    Kbler H, Shaffer J P, Baluksian T, Lw R, Pfau T 2010 Nat. Photon. 4 112

    [36]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp38-49

    [37]

    Osterwalder A, Merkt F 1999 Phys. Rev. Lett. 82 1831

    [38]

    Mack M, Karlewski F, Hattermann H, Hockh S, Jessen F, Cano D, Fortagh J 2011 Phys. Rev. A 83 052515

  • [1] Wu Bo, Lin Yi, Wu Feng-Chuan, Chen Xiao-Zhang, An Qiang, Liu Yi, Fu Yun-Qi. Quantum microwave electric field measurement technology based on enhancement electric filed resonator. Acta Physica Sinica, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [2] Xue Yong-Mei, Hao Li-Ping, Fan Jia-Bei, Jiao Yue-Chun, Zhao Jian-Ming. nS1/2→(n+1)S1/2 two-photon excitation EIT-AT spectrum of Rydberg atom. Acta Physica Sinica, 2022, 71(4): 043202. doi: 10.7498/aps.71.20211458
    [3] Wu Feng-Chuan, Lin Yi, Wu Bo, Fu Yun-Qi. Response characteristics of radio frequency pulse of Rydberg atoms. Acta Physica Sinica, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [4] nS1/2→(n+1)S1/2 two-photon excitation EIT-AT spectrum of Rydberg atom. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211458
    [5] Chen Zhi-Wen, She Zhen-Yue, Liao Kai-Yu, Huang Wei, Yan Hui, Zhu Shi-Liang. Terahertz measurement based on Rydberg atomic antenna. Acta Physica Sinica, 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [6] Liu Qiang, He Jun, Wang Jun-Min. Narrow-linewidth coherent population oscillation spectroscopy of room-temperature cesium atomic ensemble. Acta Physica Sinica, 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [7] Fan Jia-Bei, Hao Li-Ping, Bai Jing-Xu, Jiao Yue-Chun, Zhao Jian-Ming, Jia Suo-Tang. High-sensitive microwave sensor and communication based on Rydberg atoms. Acta Physica Sinica, 2021, 70(6): 063201. doi: 10.7498/aps.70.20201401
    [8] Chao Xing-Bing, Pan Lu-Ping, Wang Zi-Sheng, Yang Feng-Tao, Ding Jian-Ping. Influence of pixelation effect of image sensor on resolution of Fresnel incoherent correlation holography. Acta Physica Sinica, 2019, 68(6): 064203. doi: 10.7498/aps.68.20181844
    [9] Fan Jia-Bei, Jiao Yue-Chun, Hao Li-Ping, Xue Yong-Mei, Zhao Jian-Ming, Jia Suo-Tang. Microwave electromagnetically induced transparency and Aulter-Townes spectrum of cesium Rydberg atom. Acta Physica Sinica, 2018, 67(9): 093201. doi: 10.7498/aps.67.20172645
    [10] Yan Li-Yun, Liu Jia-Sheng, Zhang Hao, Zhang Lin-Jie, Xiao Lian-Tuan, Jia Suo-Tang. Measurement of backscattered electric field of chipless radio frequency identification tag based on Rydberg atoms. Acta Physica Sinica, 2017, 66(24): 243201. doi: 10.7498/aps.66.243201
    [11] Xue Yong-Mei, Hao Li-Ping, Jiao Yue-Chun, Han Xiao-Xuan, Bai Su-Ying,  Zhao Jian-Ming, Jia Suo-Tang. Autler-Townes splitting of ultracold cesium Rydberg atoms. Acta Physica Sinica, 2017, 66(21): 213201. doi: 10.7498/aps.66.213201
    [12] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of a cesium Rydberg atom in weak radio-frequency field. Acta Physica Sinica, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [13] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of Rydberg atoms in modulated laser fields. Acta Physica Sinica, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [14] Wang Li-Mei, Zhang Hao, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Observation of the avoided crossing of Cs Rydberg Stark states. Acta Physica Sinica, 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [15] Wang Yong, Zhang Hao, Chen Jie, Wang Li-Mei, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. State transfer of ultracold nS Rydberg atoms. Acta Physica Sinica, 2013, 62(9): 093201. doi: 10.7498/aps.62.093201
    [16] Che Jun-Ling, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang. Evolution of ultracold 70S Cs Rydberg atom. Acta Physica Sinica, 2012, 61(4): 043205. doi: 10.7498/aps.61.043205
    [17] Feng Zhi-Gang, Zhang Hao, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Measurement of lifetime of ultracold cesium Rydberg states. Acta Physica Sinica, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [18] Zhu Xing-Bo, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Experimental investigation of Stark effect of ultra-cold 39D cesium Rydberg atoms. Acta Physica Sinica, 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [19] Meng Hui-Yan, Kang Shuai, Shi Ting-Yun, Zhan Ming-Sheng. Model potential calculations of oscillator strength spectra of lithium atoms in parallel electric and magnetic fields. Acta Physica Sinica, 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
    [20] He Li-Ming, Yang Yue, Lu Hui. Core polarization and the calculation of lifetimes of highs series Rydberg state s of Na atom. Acta Physica Sinica, 2003, 52(6): 1385-1389. doi: 10.7498/aps.52.1385
Metrics
  • Abstract views:  6578
  • PDF Downloads:  315
  • Cited By: 0
Publishing process
  • Received Date:  12 December 2017
  • Accepted Date:  05 February 2018
  • Published Online:  05 April 2018

/

返回文章
返回