Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Polarization-controlled dual-band broadband infrared absorber

Yang Peng Han Tian-Cheng

Citation:

Polarization-controlled dual-band broadband infrared absorber

Yang Peng, Han Tian-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As an important branch of metamaterial-based devices, metamaterial absorber (MA) has aroused great interest and made great progress in the past several years. By manipulating the magnetic resonance and the electric resonance simultaneously, the effective impedance of MA will match the free space impedance, thus resulting in a perfect absorption of incident waves. Due to the advantages of thin thickness, flexible design and tunable property, MA has been extensively studied at various frequencies, e. g. microwave frequency, THz, infrared frequency, and optical frequency. Infrared MA, having important applications in infrared stealth, infrared detection, radiative cooling, and sensors, receives more and more attention, especially for those absorbers based on easy-fabricated one-dimensional grating structure. However, such a grating-based absorber is usually workable in narrow band and effective only for transverse magnetic (TM) wave.In this paper, a dual-band broadband absorber is proposed based on the easy-fabricated grating structure. The basic unit of the proposed absorber consists of eight gradient subunits, each of which is composed of vertically cascaded two pairs of metal-dielectric bilayers. The as-designed absorber has perfect absorption for both TM and transverse electric (TE) waves. More importantly, the absorption band is different for different polarized wave, which provides more choices and greater flexibility for application. Full-wave simulation shows that the absorption of TM wave is above 90% from 1.68 μm to 2 μm, while the absorption of TE wave is very small (no more than 6%). The absorption of TE wave is above 90% from 3.8 to 3.9 μm, while the absorption of TM wave is very small (no more than 5%). In order to reveal the working principle of the proposed absorber, the electric-field distributions of the whole structure are calculated at different frequency, which demonstrates that the broadband absorption is achieved by exciting multiple resonant coupling. Furthermore, we investigate the performance of the proposed absorber in oblique incidence, and find that the designed absorber can exhibit a good absorption within a broad incident angle ranging from 0 to 60 degrees. It is worth noting that there is an absorption fracture band in the absorption spectrum of TM waves, which is because no resonance occurs in all subunits, resulting in almost no absorption.In conclusion, we have proposed a dual-band broadband absorber that demonstrates independent absorption of the TM waves and the waves in different bands, which has potential applications in thermal detectors and thermal emitters. The proposed scheme can be extended to microwave, THz, and even visible light band.
      Corresponding author: Han Tian-Cheng, tchan123@swu.edu.cm
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304253) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. XDJK2016A019).
    [1]

    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98

    [2]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342

    [3]

    Li W, Valentine J 2014 Nano Lett. 14 3510

    [4]

    Shen L, Zhang B, Liu Z, Wang Z, Lin S, Dehdashti S, Li E, Chen H 2015 Adv. Opt. Mater. 3 1738

    [5]

    Raman A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540

    [6]

    Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R, Yin X 2017 Science 355 1062

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Hao J, Wang J, Liu X L, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 4184

    [9]

    Wang J, Chen Y, Hao J, Yan M, Qiu M 2011 J. Appl. Phys. 109 074510

    [10]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Ding F, Dai J, Chen Y, Zhu J, Jin Y, Bozhevolnyi S I 2016 Sci. Rep. 6 39445

    [12]

    Luo M, Shen S, Zhou L, Wu S, Zhou Y, Chen L 2017 Opt. Express 25 16715

    [13]

    Wu J 2016 Opt. Mater. 62 47

    [14]

    Li L, L Z 2017 J. Appl. Phys. 122 055104

    [15]

    Zhu P, Guo L J 2012 Appl. Phys. Lett. 101 051105

    [16]

    Feng R, Ding W, Liu L, Chen L, Qiu J, Chen G 2014 Opt. Express 22 A335

    [17]

    Koechlin C, Bouchon P, Pardo F, Jaeck J, Lafosse X, Pelouard J L, Haidar R 2011 Appl. Phys. Lett. 99 241104

    [18]

    Cui Y, Xu J, Fung K H, Jin Y, Kumar A, He S, Fang N X 2011 Appl. Phys. Lett. 99 193

    [19]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443

    [20]

    Wu J, Zhou C, Yu J, Cao H, Li S, Jia W 2014 Opt. Commun. 329 38

    [21]

    Chern R L, Chen Y T, Lin H Y 2010 Opt. Express 18 19510

    [22]

    Feng R, Qiu J, Cao Y, Liu L, Ding W, Chen L 2015 Opt. Express 23 21023

    [23]

    Palik E D 1985 Handbook of Optical Constants of Solids (Manhattan:Academic Press) p189

    [24]

    Zhang K L, Hou Z L, Bi S, Fang H M 2017 Chin. Phys. B 26 127802

    [25]

    Qiu C W, Hao J, Qiu M, Zouhdi S 2012 Opt. Lett. 37 4955

    [26]

    Sakurai A, Zhao B, Zhang Z M 2014 J. Quant. Spectrosc. Radiat. Transfer 149 33

  • [1]

    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98

    [2]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342

    [3]

    Li W, Valentine J 2014 Nano Lett. 14 3510

    [4]

    Shen L, Zhang B, Liu Z, Wang Z, Lin S, Dehdashti S, Li E, Chen H 2015 Adv. Opt. Mater. 3 1738

    [5]

    Raman A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540

    [6]

    Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R, Yin X 2017 Science 355 1062

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Hao J, Wang J, Liu X L, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 4184

    [9]

    Wang J, Chen Y, Hao J, Yan M, Qiu M 2011 J. Appl. Phys. 109 074510

    [10]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Ding F, Dai J, Chen Y, Zhu J, Jin Y, Bozhevolnyi S I 2016 Sci. Rep. 6 39445

    [12]

    Luo M, Shen S, Zhou L, Wu S, Zhou Y, Chen L 2017 Opt. Express 25 16715

    [13]

    Wu J 2016 Opt. Mater. 62 47

    [14]

    Li L, L Z 2017 J. Appl. Phys. 122 055104

    [15]

    Zhu P, Guo L J 2012 Appl. Phys. Lett. 101 051105

    [16]

    Feng R, Ding W, Liu L, Chen L, Qiu J, Chen G 2014 Opt. Express 22 A335

    [17]

    Koechlin C, Bouchon P, Pardo F, Jaeck J, Lafosse X, Pelouard J L, Haidar R 2011 Appl. Phys. Lett. 99 241104

    [18]

    Cui Y, Xu J, Fung K H, Jin Y, Kumar A, He S, Fang N X 2011 Appl. Phys. Lett. 99 193

    [19]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443

    [20]

    Wu J, Zhou C, Yu J, Cao H, Li S, Jia W 2014 Opt. Commun. 329 38

    [21]

    Chern R L, Chen Y T, Lin H Y 2010 Opt. Express 18 19510

    [22]

    Feng R, Qiu J, Cao Y, Liu L, Ding W, Chen L 2015 Opt. Express 23 21023

    [23]

    Palik E D 1985 Handbook of Optical Constants of Solids (Manhattan:Academic Press) p189

    [24]

    Zhang K L, Hou Z L, Bi S, Fang H M 2017 Chin. Phys. B 26 127802

    [25]

    Qiu C W, Hao J, Qiu M, Zouhdi S 2012 Opt. Lett. 37 4955

    [26]

    Sakurai A, Zhao B, Zhang Z M 2014 J. Quant. Spectrosc. Radiat. Transfer 149 33

  • [1] Li Lei, Zhi Yu-Song, Zhang Mao-Lin, Liu Zeng, Zhang Shao-Hui, Ma Wan-Yu, Xu Qiang, Shen Gao-Hui, Wang Xia, Guo Yu-Feng, Tang Wei-Hua. Dual-band and dual-mode ultraviolet photodetection characterizations of Ga2O3/Al0.1Ga0.9N homo-type heterojunction. Acta Physica Sinica, 2023, 72(2): 027301. doi: 10.7498/aps.72.20221738
    [2] Ning Ren-Xia, Huang Wang, Wang Fei, Sun Jian, Jiao Zheng. Electromagnetic induction-like transparency in dual-band with dual-bright mode coupling. Acta Physica Sinica, 2022, 71(1): 014201. doi: 10.7498/aps.71.20211312
    [3] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [4] Li Hai-Peng, Wu Xiao, Ding Hai-Yang, Xin Ke-Wei, Wang Guang-Ming. Wideband circularly-polarized bifunction devices employing composite metasurfaces. Acta Physica Sinica, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [5] Dual band Analog - Electromagnetic Induced Transparency of Bright-Bright Mode Coupling on Metamaterial. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211312
    [6] Zhou Yi, Chen Rui, Chen Wen-Jie, Ma Yun-Gui. Advances in spatial analog optical computing devices. Acta Physica Sinica, 2020, 69(15): 157803. doi: 10.7498/aps.69.20200283
    [7] Lin Yue-Chai, Liu Fang, Huang Yi-Dong. Cherenkov radiation based on metamaterials. Acta Physica Sinica, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [8] Yang Peng, Qin Jin, Xu Jin, Han Tian-Cheng. Ultrathin flexible transmission metamaterial absorber. Acta Physica Sinica, 2019, 68(8): 087802. doi: 10.7498/aps.68.20182225
    [9] Quan Jia-Qi, Sheng Zong-Qiang, Wu Hong-Wei. Omnidirectional cloaking based on spoof surface plasmonic structure. Acta Physica Sinica, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [10] Yao Yao, Shen Yue, Hao Jia-Ming, Dai Ning. Antireflection coatings based on subwavelength artificial engineering microstructures. Acta Physica Sinica, 2019, 68(14): 147802. doi: 10.7498/aps.68.20190702
    [11] Xu Jin, Li Rong-Qiang, Jiang Xiao-Ping, Wang Shen-Yun, Han Tian-Cheng. Ultra-wideband linear polarization converter based on square split ring. Acta Physica Sinica, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [12] Pu Ming-Bo, Wang Chang-Tao, Wang Yan-Qin, Luo Xian-Gang. Subwavelength electromagnetics below the diffraction limit. Acta Physica Sinica, 2017, 66(14): 144101. doi: 10.7498/aps.66.144101
    [13] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [14] Ma Xiao-Liang, Li Xiong, Guo Ying-Hui, Zhao Ze-Yu, Luo Xian-Gang. Meta-antenna: principle, device and application. Acta Physica Sinica, 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [15] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [16] Lu Lei, Qu Shao-Bo, Shi Hong-Yu, Zhang An-Xue, Xia Song, Xu Zhuo, Zhang Jie-Qiu. A broadband transmission absorption polarization-independent metamaterial absorber. Acta Physica Sinica, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [17] Geng Hui, Liu Jian-Guo, Zhang Yu-Jun, Kan Rui-Feng, Xu Zhen-Yu, Yao Lu, Ruan Jun. Ethanol vapor measurement based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [18] Zou Tao-Bo, Hu Fang-Rong, Xiao Jing, Zhang Long-Hui, Liu Fang, Chen Tao, Niu Jun-Hao, Xiong Xian-Ming. Design of a polarization-insensitive and broadband terahertz absorber using metamaterials. Acta Physica Sinica, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [19] Shen Xiao-Peng, Cui Tie-Jun, Ye Jian-Xiang. Dual band metamaterial absorber in microwave regime. Acta Physica Sinica, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [20] Huo Yong-Heng, Ma Wen-Quan, Zhang Yan-Hua, Huang Jian-Liang, Wei Yang, Cui Kai, Chen Liang-Hui. Dual-band quantum well infrared photodetectors with two ohmic contacts. Acta Physica Sinica, 2011, 60(9): 098401. doi: 10.7498/aps.60.098401
Metrics
  • Abstract views:  5129
  • PDF Downloads:  210
  • Cited By: 0
Publishing process
  • Received Date:  22 December 2017
  • Accepted Date:  21 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回