Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modes characteristics analysis of THz waveguides based on three graphene-coated dielectric nanowires

Wei Zhuang-Zhi Xue Wen-Rui Peng Yan-Ling Cheng Xin Li Chang-Yong

Citation:

Modes characteristics analysis of THz waveguides based on three graphene-coated dielectric nanowires

Wei Zhuang-Zhi, Xue Wen-Rui, Peng Yan-Ling, Cheng Xin, Li Chang-Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the real parts of the effective refractive indexes and the propagating lengths of five low-order modes of the terahertz waveguides based on three graphene-coated dielectric nanowires are analyzed by using the multipole method. The formation of these five lowest order modes can be attributed to the five combinations between the two lowest order modes supported when three nanowires exist alone. Therefore they are named Mode 1, Mode 2, Mode 3, Mode 4, and Mode 5 in sequence. The results show that the mode characteristics of the waveguide can be effectively tuned by changing the operating frequency, the radius of the intermediate nanowire, the gap distance between the nanowires and the Fermi energy of graphene. As the operating frequency increases from 30 THz to 40 THz, the real part of each of the effective refractive indexes increases and the propagation length decreases, and the crossover phenomenon occurs in the process of change. In addition, the real parts of the effective refractive indexes and the propagation lengths of Modes 3 and 4 are basically the same. When the radius of the middle nanowire increases from 25 nm to 75 nm, the real parts of the effective refractive indexes of Modes 1 and 2 increase, and the propagation length of Mode 1 decreases and then increases. Besides the real parts of the effective refractive indexes and the propagation lengths of Modes 3 and 4 are basically not affected by the change of radius, and the values of these two modes are basically the same. For Mode 5, the real part of the effective refractive index and propagation length slowly increase. When the spacing between the nanowires increases from 10 nm to 50 nm, Modes 3 and 4 are basically unaffected by the change of spacing, and the values of these two modes are basically the same. The real parts of the effective refractive indexes of the other modes decrease and the propagation lengths increase and eventually stabilize, and the crossover phenomenon occurs in the process of change. As the Fermi energy of graphene increases from 0.4 eV to 1.2 eV, the real part of the effective refractive index decreases and the propagation length increases. The calculation shows that the result obtained by the multipole method is exactly the same as that obtained by the finite element method. To date, no one has analyzed the terahertz waveguides based on three graphene-coated dielectric nanowires. This work can provide a theoretical basis for the design, fabrication and application of terahertz waveguide based on graphene-coated dielectric nanowires. Such waveguides have potential applications in the field of mode-division multiplexing.
      Corresponding author: Xue Wen-Rui, wrxue@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61378039, 61575115) and the National Basic Science Talents Training Fund of China (Grant No. J1103210).
    [1]

    Siegel P H 2002 IEEE Trans. Microw. Theory 50 910

    [2]

    Wang S H, Ferguson B, Zhang C L, Zhang X C 2003 Acta Phys. Sin. 52 120 (in Chinese) [王少宏,B. Ferguson,张存林,张希成 2003 物理学报 52 120]

    [3]

    Chen Q, Tani M, Jiang Z P, Zhang X C 2001 J. Opt. Soc. Am. B 18 823

    [4]

    Han H, Park H, Cho M, Kim J 2002 Appl. Phys. Lett. 80 2634

    [5]

    Redo-Sanchez A, Zhang X C 2008 IEEE J. Sel. Top. Quant. 14 260

    [6]

    Gallot G, Jamison S P, McGowan R W, Grischkowsky D 2000 J. Opt. Soc. Am. B 17 851

    [7]

    Kawase K, Mizuno M, Sohma S, Takahashi T, Taniuchi T, Urata Y, Wada S, Tashiro H, Ito H 1999 Opt. Lett. 24 1065

    [8]

    Quema A, Takahashi H, Sakai M, Goto M, Ono S, Sarukura N, Shioda R, Yamada N 2003 Jpn. J. Appl. Phys. 42 L932

    [9]

    Chen L J, Chen H W, Kao T F, Lu J Y, Sun C K 2006 Opt. Lett. 31 308

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [11]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nature Nanotechnol. 6 630

    [12]

    Wang J C, Song C, Hang J, Hu Z D, Zhang F 2017 Opt. Express 25 23880

    [13]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [14]

    He X Y, Kim S 2013 J. Opt. Soc. Am. B 30 2461

    [15]

    Wang J C, Wang X S, Shao H Y, Hu Z D, Zheng G G, Zhang F 2017 Nanoscale Res. Lett. 12 9

    [16]

    Donnelly C, Tan D T H 2014 Opt. Express 22 22820

    [17]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L, Abajo F J G 2012 ACS Nano 6 431

    [18]

    Hajati M, Hajati Y 2016 Appl. Opt. 55 1878

    [19]

    Wang X S, Chen C, Pan L, Wang J C 2016 Sci. Rep. UK 6 32616

    [20]

    He S L, Zhang X Z, He Y R 2013 Opt. Express 21 30664

    [21]

    Gao Y X, Ren G B, Zhu B F, Wang J, Jian S S 2014 Opt. Lett. 39 5909

    [22]

    Yang J F, Yang J J, Deng W, Mao F C, Huang M 2015 Opt. Express 23 32289

    [23]

    Xing R, Jian S S 2016 IEEE Photon. Tech. L. 28 2779

    [24]

    Zhu B F, Ren G B, Yang Y, Gao Y X, Wu B L, Lian Y D, Wang J, Jian S S 2015 Plasmonics 10 839

    [25]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M 2014 Nat. Commun. 5 3069

    [26]

    Yang H B, Qiu M, Li Q 2016 Laser Photon. Rev. 10 278

    [27]

    Wu X R, Huang C R, Xu K, Shu C, Tsang H K 2017 J. Lightwave Technol. 35 3223

    [28]

    Nikitin A Y, Guinea F, García-Vidal F J, Martín-Moreno L 2011 Phys. Rev. B 84 195446

    [29]

    Wijngaard W 1973 J. Opt. Soc. Am. 63 944

    [30]

    Wijngaard W 1974 J. Opt. Soc. Am. 64 1136

    [31]

    Huang H S, Chang H C 1990 J. Lightwave Technol. 8 945

    [32]

    Lo K M, McPhedran R C, Bassett I M, Milton G W 1994 J. Lightwave Technol. 12 396

    [33]

    White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, Sterke C M, Botten L C 2002 J. Opt. Soc. Am. B 19 2322

    [34]

    Kuhlmey B T, White T P, Renversez G, Maystre D, Botten L C, Sterke C M, McPhedran R C 2002 J. Opt. Soc. Am. B 19 2331

  • [1]

    Siegel P H 2002 IEEE Trans. Microw. Theory 50 910

    [2]

    Wang S H, Ferguson B, Zhang C L, Zhang X C 2003 Acta Phys. Sin. 52 120 (in Chinese) [王少宏,B. Ferguson,张存林,张希成 2003 物理学报 52 120]

    [3]

    Chen Q, Tani M, Jiang Z P, Zhang X C 2001 J. Opt. Soc. Am. B 18 823

    [4]

    Han H, Park H, Cho M, Kim J 2002 Appl. Phys. Lett. 80 2634

    [5]

    Redo-Sanchez A, Zhang X C 2008 IEEE J. Sel. Top. Quant. 14 260

    [6]

    Gallot G, Jamison S P, McGowan R W, Grischkowsky D 2000 J. Opt. Soc. Am. B 17 851

    [7]

    Kawase K, Mizuno M, Sohma S, Takahashi T, Taniuchi T, Urata Y, Wada S, Tashiro H, Ito H 1999 Opt. Lett. 24 1065

    [8]

    Quema A, Takahashi H, Sakai M, Goto M, Ono S, Sarukura N, Shioda R, Yamada N 2003 Jpn. J. Appl. Phys. 42 L932

    [9]

    Chen L J, Chen H W, Kao T F, Lu J Y, Sun C K 2006 Opt. Lett. 31 308

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [11]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nature Nanotechnol. 6 630

    [12]

    Wang J C, Song C, Hang J, Hu Z D, Zhang F 2017 Opt. Express 25 23880

    [13]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [14]

    He X Y, Kim S 2013 J. Opt. Soc. Am. B 30 2461

    [15]

    Wang J C, Wang X S, Shao H Y, Hu Z D, Zheng G G, Zhang F 2017 Nanoscale Res. Lett. 12 9

    [16]

    Donnelly C, Tan D T H 2014 Opt. Express 22 22820

    [17]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L, Abajo F J G 2012 ACS Nano 6 431

    [18]

    Hajati M, Hajati Y 2016 Appl. Opt. 55 1878

    [19]

    Wang X S, Chen C, Pan L, Wang J C 2016 Sci. Rep. UK 6 32616

    [20]

    He S L, Zhang X Z, He Y R 2013 Opt. Express 21 30664

    [21]

    Gao Y X, Ren G B, Zhu B F, Wang J, Jian S S 2014 Opt. Lett. 39 5909

    [22]

    Yang J F, Yang J J, Deng W, Mao F C, Huang M 2015 Opt. Express 23 32289

    [23]

    Xing R, Jian S S 2016 IEEE Photon. Tech. L. 28 2779

    [24]

    Zhu B F, Ren G B, Yang Y, Gao Y X, Wu B L, Lian Y D, Wang J, Jian S S 2015 Plasmonics 10 839

    [25]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M 2014 Nat. Commun. 5 3069

    [26]

    Yang H B, Qiu M, Li Q 2016 Laser Photon. Rev. 10 278

    [27]

    Wu X R, Huang C R, Xu K, Shu C, Tsang H K 2017 J. Lightwave Technol. 35 3223

    [28]

    Nikitin A Y, Guinea F, García-Vidal F J, Martín-Moreno L 2011 Phys. Rev. B 84 195446

    [29]

    Wijngaard W 1973 J. Opt. Soc. Am. 63 944

    [30]

    Wijngaard W 1974 J. Opt. Soc. Am. 64 1136

    [31]

    Huang H S, Chang H C 1990 J. Lightwave Technol. 8 945

    [32]

    Lo K M, McPhedran R C, Bassett I M, Milton G W 1994 J. Lightwave Technol. 12 396

    [33]

    White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, Sterke C M, Botten L C 2002 J. Opt. Soc. Am. B 19 2322

    [34]

    Kuhlmey B T, White T P, Renversez G, Maystre D, Botten L C, Sterke C M, McPhedran R C 2002 J. Opt. Soc. Am. B 19 2331

  • [1] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [3] Wang Bo-Yun, Zhu Zi-Hao, Gao You-Kang, Zeng Qing-Dong, Liu Yang, Du Jun, Wang Tao, Yu Hua-Qing. Plasmon induced transparency effect based on graphene nanoribbon waveguide side-coupled with rectangle cavities system. Acta Physica Sinica, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [4] Li Hui-Hui, Xue Wen-Rui, Li Ning, Du Yi-Da, Li Chang-Yong. Mode properties of elliptical dielectric waveguide with nested eccentric hollow cylinder coated with graphene. Acta Physica Sinica, 2022, 71(10): 108101. doi: 10.7498/aps.71.20212321
    [5] Plasmon induced transparency effect based on graphene nanoribbon waveguide side–coupled with rectangle cavities system. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211397
    [6] Dong Hui-Ying, Qin Xiao-Ru, Xue Wen-Rui, Cheng Xin, Li Ning, Li Chang-Yong. Mode characteristics of asymmetric graphene-coated elliptical dielectric nano-parallel wires waveguide. Acta Physica Sinica, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [7] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [8] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [9] Cheng Xin, Xue Wen-Rui, Wei Zhuang-Zhi, Dong Hui-Ying, Li Chang-Yong. Mode characteristic analysis of optical waveguides based on graphene-coated elliptical dielectric nanowire. Acta Physica Sinica, 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [10] Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo. Interface adhesion property between graphene film and surface of nanometric microstructure. Acta Physica Sinica, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [11] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [12] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [13] Peng Yan-Ling, Xue Wen-Rui, Wei Zhuang-Zhi, Li Chang-Yong. Mode properties analysis of graphene-coated asymmetric parallel dielectric nanowire waveguides. Acta Physica Sinica, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [14] Li Dan, Liang Jun-Wu, Liu Hua-Wei, Zhang Xue-Hong, Wan Qiang, Zhang Qing-Lin, Pan An-Lian. Asymmetric waveguide and the dual-wavelength stimulated emission for CdS/CdS0.48Se0.52 axial nanowire heterostructures. Acta Physica Sinica, 2017, 66(6): 064204. doi: 10.7498/aps.66.064204
    [15] Gu Yun-Feng, Wu Xiao-Li, Wu Hong-Zhang. Ballistic thermal rectification in the three-terminal graphene nanojunction with asymmetric connection angles. Acta Physica Sinica, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [16] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [18] Chen Yuan-Yuan, Zou Ren-Hua, Song Gang, Zhang Kai, Yu Li, Zhao Yu-Fang, Xiao Jing-Hua. The polarization characteristics of the excitation and emission of surface plasmon polarization in the Ag nanowires. Acta Physica Sinica, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [19] Yue Song, Li Zhi, Chen Jian-Jun, Gong Qi-Huang. Dielectric waveguide with deep subwavelength mode confinement based on coupled nanowires. Acta Physica Sinica, 2011, 60(9): 094214. doi: 10.7498/aps.60.094214
    [20] Sheng Zheng, Huang Si-Xun, Zeng Guo-Dong. Ocean duct inversion from radar clutter using Bayesian-Markov chain Monte Carlo method. Acta Physica Sinica, 2009, 58(6): 4335-4341. doi: 10.7498/aps.58.4335
Metrics
  • Abstract views:  4964
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2018
  • Accepted Date:  06 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回