Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light

Zhang Xin-Cheng Liao Wen-Hu Zuo Min

Citation:

Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light

Zhang Xin-Cheng, Liao Wen-Hu, Zuo Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The new-type monolayer semiconductor material molybdenum disulfide (MoS2) is direct band gap semiconductor with a similar geometrical structure to graphene, and as it owns superior physical features such as spin/valley Hall effect, it should be more excellent than graphene from the viewpoint of device design and applications. The manipulation of the spin and valley transport in MoS2-based device has been an interesting subject in both experimental and theoretical researches. Experimentally, the photoninduced quantum spin and valley Hall effects may result in high on-off speed spin and/or valley switching based on MoS2. Theoretically, the off-resonant electromagnetic field induced Floquet effective energy should modulate effectively the electronic structure, spin/valley Hall conductance as well as the spin/valley polarization of the MoS2, through the virtual photon absorption and/or emission processes. Utilizing the low energy effective Hamilton model from the tight-binding approximation and Kubo linear response theorem, we theoretically investigate the electronic structure and spin/valley transport properties of the monolayer MoS2 under the irradiation of the off-resonant circularly polarized light in the present work. The band gaps around the K and K' point of the Brillouin region for monolayer MoS2 proves to increase linearly and decrease firstly and then increase, respectively with the increase of external off-resonant right-circularly polarized light induced effective coupling energy, and decrease firstly and then increase and increase linearly with the increase of left-circularly polarized light induced effective coupling energy, therefore, the interesting transition of semiconducting-semimetallic-semiconducting may be observable in monolayer MoS2. Furthermore, the spin and valley Hall conductance of the monolayer MoS2 for the case without off-resonant circularly polarized light are 0 and 2e2/h, respectively, and they will convert into -2e2/h and 0 when the absolute value of the off-resonant circularly polarized light induced effective coupling energy is in a range of 0.79-0.87 eV. Finally, the spin polarization for monolayer MoS2 increases up to a largest value and changes from positive to negative and/or negative to positive at the vicinity of the effective coupling energy ±0.79 eV of the off-resonant right/left circularly polarized light, while the valley polarization should increase firstly and then decrease with the off-resonant circularly polarized light, and goes up to 100% in the range of 0.79-0.87 eV of the absolute value for effective coupling energy. Therefore, the external off-resonant circularly polarized electromagnetic field should be an effective means in manipulating the electronic structure, spin/valley Hall conductance and spin/valley polarization of the monolayer MoS2, the two-dimensional MoS2 may be tuned into a brand bandgap material with excellent spin/valley and optoelectrical properties.
      Corresponding author: Liao Wen-Hu, whliao2007@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11664010, 11264013), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2017JJ2217, 12JJ4003), the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 14B148), and the Research Program of Jishou University, China (Grant Nos. JGY201763, Jdy16021).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I 2005 Nature 438 197

    [3]

    Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nature Mater. 9 315

    [4]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [5]

    Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nature Mater. 6 770

    [6]

    Xia F, Farmer D B, Lin Y, Avouris P 2010 Nano Lett. 10 715

    [7]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30

    [8]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206

    [9]

    Li Z, Carbotte J P 2012 Phys. Rev. B 86 205425

    [10]

    Majidi L, Rostami H, Asgari R 2014 Phys. Rev. B 89 045413

    [11]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [12]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [13]

    Mak K F, Lee C, Hone J, Shan J, Tony F H 2010 Phys. Rev. Lett. 105 136805

    [14]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [15]

    Liu H, Peide D Y 2012 IEEE Electron Dev. Lett. 33 546

    [16]

    Zhang Y, Ye J, Matsuhashi Y, Iwasa Y 2012 Nano Lett. 12 1136

    [17]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802

    [18]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887

    [19]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494

    [20]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490

    [21]

    Sengupta P, Bellotti E 2016 Appl. Phys. Lett. 108 211104

    [22]

    Zheng H L, Yang B S, Wang D D, Han R L, Du X B, Yan Y 2014 Appl. Phys. Lett. 104 132403

    [23]

    Yarmohammadi M 2017 J. Magnet. Magnet. Mater. 426 621

    [24]

    Wang S, Wang J 2015 Physica B 458 22

    [25]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74

    [26]

    Rostami H, Moghaddam A G, Asgari R 2013 Phys. Rev. B 88 085440

    [27]

    Tahir M, Schwingenschlogl U 2014 New J. Phys. 16 115003

    [28]

    Zhou L, Carbotte J P 2012 Phys. Rev. B 86 205425

    [29]

    Kitagawa T, Oka T, Brataas A, Fu L, Demler E 2011 Phys. Rev. B 84 235108

    [30]

    Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Guzik A A, Demler E, White A G 2012 Nat. Commun. 3 882

    [31]

    Tahir M, Manchon A, Sabeeh K, Schwingenschlogl U 2013 Appl. Phys. Lett. 102 162412

    [32]

    Sinitsyn N A, Hill J E, Min H, Sinova J, MacDonald A H 2006 Phys. Rev. Lett. 97 106804

    [33]

    Dutta P, Maiti S K, Karmakar S N 2012 J. Appl. Phys. 112 044306

    [34]

    Cazalilla M A, Ochoa H, Guinea F 2014 Phys. Rev. Lett. 113 077201

    [35]

    Tahir M, Manchon A, Schwingenschlogl U 2014 Phys. Rev. B 90 125438

    [36]

    Feng W X, Yao Y G, Zhu W G, Zhou J J, Yao W, Xiao D 2012 Phys. Rev. B 86 165108

    [37]

    Missault N, Vasilopoulos P, Vargiamidis V, Peeters F M, van Duppen B 2015 Phys. Rev. B 92 195423

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I 2005 Nature 438 197

    [3]

    Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nature Mater. 9 315

    [4]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [5]

    Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nature Mater. 6 770

    [6]

    Xia F, Farmer D B, Lin Y, Avouris P 2010 Nano Lett. 10 715

    [7]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30

    [8]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206

    [9]

    Li Z, Carbotte J P 2012 Phys. Rev. B 86 205425

    [10]

    Majidi L, Rostami H, Asgari R 2014 Phys. Rev. B 89 045413

    [11]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [12]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [13]

    Mak K F, Lee C, Hone J, Shan J, Tony F H 2010 Phys. Rev. Lett. 105 136805

    [14]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [15]

    Liu H, Peide D Y 2012 IEEE Electron Dev. Lett. 33 546

    [16]

    Zhang Y, Ye J, Matsuhashi Y, Iwasa Y 2012 Nano Lett. 12 1136

    [17]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802

    [18]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887

    [19]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494

    [20]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490

    [21]

    Sengupta P, Bellotti E 2016 Appl. Phys. Lett. 108 211104

    [22]

    Zheng H L, Yang B S, Wang D D, Han R L, Du X B, Yan Y 2014 Appl. Phys. Lett. 104 132403

    [23]

    Yarmohammadi M 2017 J. Magnet. Magnet. Mater. 426 621

    [24]

    Wang S, Wang J 2015 Physica B 458 22

    [25]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74

    [26]

    Rostami H, Moghaddam A G, Asgari R 2013 Phys. Rev. B 88 085440

    [27]

    Tahir M, Schwingenschlogl U 2014 New J. Phys. 16 115003

    [28]

    Zhou L, Carbotte J P 2012 Phys. Rev. B 86 205425

    [29]

    Kitagawa T, Oka T, Brataas A, Fu L, Demler E 2011 Phys. Rev. B 84 235108

    [30]

    Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Guzik A A, Demler E, White A G 2012 Nat. Commun. 3 882

    [31]

    Tahir M, Manchon A, Sabeeh K, Schwingenschlogl U 2013 Appl. Phys. Lett. 102 162412

    [32]

    Sinitsyn N A, Hill J E, Min H, Sinova J, MacDonald A H 2006 Phys. Rev. Lett. 97 106804

    [33]

    Dutta P, Maiti S K, Karmakar S N 2012 J. Appl. Phys. 112 044306

    [34]

    Cazalilla M A, Ochoa H, Guinea F 2014 Phys. Rev. Lett. 113 077201

    [35]

    Tahir M, Manchon A, Schwingenschlogl U 2014 Phys. Rev. B 90 125438

    [36]

    Feng W X, Yao Y G, Zhu W G, Zhou J J, Yao W, Xiao D 2012 Phys. Rev. B 86 165108

    [37]

    Missault N, Vasilopoulos P, Vargiamidis V, Peeters F M, van Duppen B 2015 Phys. Rev. B 92 195423

  • [1] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [2] Zheng Jun, Ma Li, Li Chun-Lei, Yuan Rui-Yang, Guo Ya-Tao, Fu Xu-Ri. Optically controlled silicene and germanene transistors driven by spin-bias. Acta Physica Sinica, 2022, 71(19): 198502. doi: 10.7498/aps.71.20221047
    [3] Wu Fan-Fan, Ji Yi-Ru, Yang Wei, Zhang Guang-Yu. Experimental research progress of electronic band structure and low temperature transport based on molybdenum disulfide. Acta Physica Sinica, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [4] Jiang Li-Ying, Yi Ying-Ting, Yi Zao, Yang Hua, Li Zhi-You, Su Ju, Zhou Zi-Gang, Chen Xi-Fang, Yi You-Gen. A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide. Acta Physica Sinica, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [5] Liu Kai-Long, Peng Dong-Sheng. Effects of photoelectric properties of monolayer MoS2 under tensile strain. Acta Physica Sinica, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [6] Du Jian-Bin, Feng Zhi-Fang, Zhang Qian, Han Li-Jun, Tang Yan-Lin, Li Qi-Feng. Molecular structure and electronic spectrum of MoS2under external electric field. Acta Physica Sinica, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [7] Meng Fan, Hu Jin-Hua, Wang Hui, Zou Ge-Yin, Cui Jian-Gong, Zhao Yue. Fluorescence enhancement of monolayer MoS2 in plasmonic resonator. Acta Physica Sinica, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [8] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [9] Wei Yang, Ma Xin-Guo, Zhu Lin, He Hua, Huang Chu-Yun. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure. Acta Physica Sinica, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [10] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [11] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. First-principles study on multiphase property and phase transition of monolayer MoS2. Acta Physica Sinica, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [12] Fu Chong-Yuan, Xing Song, Shen Tao, Tai Bo, Dong Qian-Min, Shu Hai-Bo, Liang Pei. Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method. Acta Physica Sinica, 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [13] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [14] Wu Qiong, Liu Jun, Dong Qian-Min, Liu Yang, Liang Pei, Shu Hai-Bo. Quantum confinement effect on electronic and optical properties of SnS. Acta Physica Sinica, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [15] Wang Yuan-Qian, He Jun, Xiao Si, Yang Neng-An, Chen Huo-Zhang. Wavelength selective optical limiting effect on MoS2 solution. Acta Physica Sinica, 2014, 63(14): 144204. doi: 10.7498/aps.63.144204
    [16] Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi. PL enhancement of MoS2 by Au nanoparticles. Acta Physica Sinica, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [17] Lei Tian-Min, Wu Sheng-Bao, Zhang Yu-Ming, Guo Hui, Chen De-Lin, Zhang Zhi-Yong. Effects of La, Ce and Nd doping on the electronic structure of monolayer MoS2. Acta Physica Sinica, 2014, 63(6): 067301. doi: 10.7498/aps.63.067301
    [18] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [19] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [20] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
Metrics
  • Abstract views:  5329
  • PDF Downloads:  290
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2018
  • Accepted Date:  05 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回