Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Emission spectral diagnosis of argon-helium plasma produced by radio frequency capacitive discharge

Zhang Zhi-Fan Gao Jun Lei Peng Zhou Su-Su Wang Xin-Bing Zuo Du-Luo

Citation:

Emission spectral diagnosis of argon-helium plasma produced by radio frequency capacitive discharge

Zhang Zhi-Fan, Gao Jun, Lei Peng, Zhou Su-Su, Wang Xin-Bing, Zuo Du-Luo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Optically pumped metastable rare-gas laser (OPRGL) have been proposed to overcome the shortcomings of diode-pumped alkali-vapor laser in the recent years. The OPRGL promises to realize high-scale output. But how to achieve enough particle density of metastable atoms is still an open problem. Usually, plasma produced by discharge serves as a gain medium of the OPRGL. Here in this paper, we are to reveal the effects of different discharge parameters on the plasma properties, such as particle density of metastable argon atoms. Gas discharge at a radio frequency of 13.56 MHz is adopted to excite argon atoms. Emission spectrum is employed to study argon and helium radio frequency discharge of optically pumped argon laser at high pressure, different powers of discharge and various content of argon. Gas temperature is obtained by analyzing rotational spectrum (A2∑+ → X2Π) of OH radical generated by residual water vapor and comparing simulated spectrum with the measured spectrum. The electronic excitation temperature relating to electron temperature is obtained by the method of Boltzmann's plot. Stark broadening of the spectrum is used to determine the electron density. The results show that gas temperature rises slightly with the increase of pressure and varies little with content and discharge power changing. The electronic excitation temperature increases with the decrease of pressure evidently and decreases slightly with the increase of content. The electron density is on the order of 1015 cm-3 under various conditions controlled by us. Long time discharge test reveals that residual water vapor can lead to the decrease of electron temperature, and thus reducing the yield of argon metastable state. In conclusion, considering that the higher gas temperature can improve the collision relaxation rate of helium and argon, and the higher electron temperature can improve the rate of production of argon metastable state. Thus a proposal is put forward that appropriately heating gas and reducing gas pressure can obtain higher particle density of metastable argon. Furthermore, It can be found from these results that heating and cleaning the gas during discharge may be candidate methods to obtain and sustain the higher particle density in the plasma.
      Corresponding author: Zuo Du-Luo, zuoduluo@hust.edu.cn
    • Funds: Project supported by the Foundation for Innovation of Wuhan National Laboratory for Optoelectronics, China (Grant No. 0214187070).
    [1]

    Demyanov A V, Kochetov I V, Mikheyev P A 2013 J. Phys. D 46 375202

    [2]

    Rawlins W T, Galbally-Kinney K L, Davis S J, Hoskinson A R, Hopwood J A, Heaven M C 2015 Opt. Express 23 4804

    [3]

    Han J, Heaven M C 2015 Opt. Lett. 40 1310

    [4]

    Yang Z N, Yu G Q, Wang H Y, Lu Q S, Xu X J 2015 Opt. Express 23 13823

    [5]

    Gao J, He Y Y, Sun P F, Zhang Z F, Wang X B, Zuo D L 2017 J. Opt. Soc. Am. B 34 814

    [6]

    Han J, Heaven M C, Moran P J, Pitz G A, Guild E M, Sanderson C R, Hokr B 2017 Opt. Lett. 42 4627

    [7]

    Gao J, Zhang Z F, Lei P, Wang X B, Zuo D L 2018 High Power Laser and Particle Beams 30 010102 (in Chinese) [高俊, 张秩凡, 雷鹏, 王新兵, 左都罗 2018 强激光与粒子束 30 010102]

    [8]

    Niermann B, Reuter R, Kuschel T, Benedikt J, Boke M, Winter J 2012 Plasma Sources Sci. Technol. 21 034002

    [9]

    Balcon N, Hagelaar G, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782

    [10]

    Eshel B, Perram G P 2018 J. Opt. Soc. Am. B 35 164

    [11]

    Wu Q 2010 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [武启 2010 硕士学位论文 (大连: 大连理工大学)]

    [12]

    Li S Z, Huang W T, Wang D Z 2009 Phys. Plasmas 16 093501

    [13]

    Wu R, Li Y, Zhu S G, Feng H Y, Zhang L, Wang J D 2008 Spectrosc. Spect. Anal. 28 731 (in Chinese) [武蓉, 李燕, 朱顺官, 冯红艳, 张琳, 王俊德 2008 光谱学与光谱分析 28 731]

    [14]

    Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501

    [15]

    Dong L F, Qi Y Y, Liu W Y, Fan W L 2009 J. Appl. Phys. 106 013301

    [16]

    Dong L F, Liu W Y, Yang Y J, Wang S, Ji Y F 2011 Acta Phys. Sin. 60 045202 (in Chinese) [董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞 2011 物理学报 60 045202]

    [17]

    Niermann B, Boke M, Sadeghi N, Winter J 2010 Eur. Phys. J. D 60 489

    [18]

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2011 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp325-326 (in Chinese) [迈克 A 力伯曼, 阿伦 J 里登伯格 著 (蒲以康 译) 2011 等离子体放电原理与材料处理 (北京: 科学出版社)第 325–326页]

    [19]

    Wust K 1992 Rev. Sci. Instrum. 63 2581

    [20]

    Zhai X D, Ding Y J, Peng Z M, Luo R 2012 Acta Phys. Sin. 61 123301 (in Chinese) [翟晓东, 丁艳军, 彭志敏, 罗锐 2012 物理学报 61 123301]

    [21]

    Hibbert A, Biémont E, Godefroid M, Vaeck N 1991 J. Phys. B 24 3943

  • [1]

    Demyanov A V, Kochetov I V, Mikheyev P A 2013 J. Phys. D 46 375202

    [2]

    Rawlins W T, Galbally-Kinney K L, Davis S J, Hoskinson A R, Hopwood J A, Heaven M C 2015 Opt. Express 23 4804

    [3]

    Han J, Heaven M C 2015 Opt. Lett. 40 1310

    [4]

    Yang Z N, Yu G Q, Wang H Y, Lu Q S, Xu X J 2015 Opt. Express 23 13823

    [5]

    Gao J, He Y Y, Sun P F, Zhang Z F, Wang X B, Zuo D L 2017 J. Opt. Soc. Am. B 34 814

    [6]

    Han J, Heaven M C, Moran P J, Pitz G A, Guild E M, Sanderson C R, Hokr B 2017 Opt. Lett. 42 4627

    [7]

    Gao J, Zhang Z F, Lei P, Wang X B, Zuo D L 2018 High Power Laser and Particle Beams 30 010102 (in Chinese) [高俊, 张秩凡, 雷鹏, 王新兵, 左都罗 2018 强激光与粒子束 30 010102]

    [8]

    Niermann B, Reuter R, Kuschel T, Benedikt J, Boke M, Winter J 2012 Plasma Sources Sci. Technol. 21 034002

    [9]

    Balcon N, Hagelaar G, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782

    [10]

    Eshel B, Perram G P 2018 J. Opt. Soc. Am. B 35 164

    [11]

    Wu Q 2010 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [武启 2010 硕士学位论文 (大连: 大连理工大学)]

    [12]

    Li S Z, Huang W T, Wang D Z 2009 Phys. Plasmas 16 093501

    [13]

    Wu R, Li Y, Zhu S G, Feng H Y, Zhang L, Wang J D 2008 Spectrosc. Spect. Anal. 28 731 (in Chinese) [武蓉, 李燕, 朱顺官, 冯红艳, 张琳, 王俊德 2008 光谱学与光谱分析 28 731]

    [14]

    Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501

    [15]

    Dong L F, Qi Y Y, Liu W Y, Fan W L 2009 J. Appl. Phys. 106 013301

    [16]

    Dong L F, Liu W Y, Yang Y J, Wang S, Ji Y F 2011 Acta Phys. Sin. 60 045202 (in Chinese) [董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞 2011 物理学报 60 045202]

    [17]

    Niermann B, Boke M, Sadeghi N, Winter J 2010 Eur. Phys. J. D 60 489

    [18]

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2011 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp325-326 (in Chinese) [迈克 A 力伯曼, 阿伦 J 里登伯格 著 (蒲以康 译) 2011 等离子体放电原理与材料处理 (北京: 科学出版社)第 325–326页]

    [19]

    Wust K 1992 Rev. Sci. Instrum. 63 2581

    [20]

    Zhai X D, Ding Y J, Peng Z M, Luo R 2012 Acta Phys. Sin. 61 123301 (in Chinese) [翟晓东, 丁艳军, 彭志敏, 罗锐 2012 物理学报 61 123301]

    [21]

    Hibbert A, Biémont E, Godefroid M, Vaeck N 1991 J. Phys. B 24 3943

  • [1] Guo Zhuang, Ouyang Feng, Lu Zhi-Zhou, Wang Meng-Yu, Tan Qing-Gui, Xie Cheng-Feng, Wei Bin, He Xing-Dao. Analysis and optimization of optical frequency comb spectra of magnesium fluoride microbottle resonator. Acta Physica Sinica, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [2] Qi Bing, Tian Xiao, Wang Jing, Wang Yi-Shan, Si Jin-Hai, Tang Jie. One-dimensional simulation of Ar dielectric barrier discharge driven by combined rf/dc sources at atmospheric pressure. Acta Physica Sinica, 2022, 71(24): 245202. doi: 10.7498/aps.71.20221361
    [3] Zhong Dong-Zhou, Zeng Neng, Yang Hua, Xu Zhe. Precise ranging for the multi regions of two complex-shape targets by using two chaotic polarization components in the optically pumped spin vertical cavity surface emitting laser with optical injection. Acta Physica Sinica, 2021, 70(7): 074206. doi: 10.7498/aps.70.20201693
    [4] Feng Pei-Pei, Wu Han, Zhang Nan. Study of the time-resolved emission spectra of the ejected plume generated by ultrashort laser ablation of graphite. Acta Physica Sinica, 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [5] Zhu Zhu-Qing, Wang Xiao-Lei. Experimental study on emission spectra of air plasma induced by femtosecond laser pulses. Acta Physica Sinica, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [6] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [7] Yi You-Gen, Tang Jing-Wu, Huang Du-Zhi. Theoretical calculations of X-ray spectra of Au plasma. Acta Physica Sinica, 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [8] Li Yang-Ping, Liu Zheng-Tang. Plasma emission diagnostics for the optimization of deposition parameters in RF magnetron sputtering of GaP film. Acta Physica Sinica, 2009, 58(7): 5022-5028. doi: 10.7498/aps.58.5022
    [9] Xin Ping, Sun Cheng-Wei, Qin Fu-Wen, Wen Sheng-Ping, Zhang Qing-Yu. Room-temperature photoluminescence of ZnO/MgO multiple quantum wells deposited by reactive magnetron sputtering. Acta Physica Sinica, 2007, 56(2): 1082-1087. doi: 10.7498/aps.56.1082
    [10] Zhang Li-Jie, Lei Ming, Wang Yu-Ming, Li Jian-Li, Sun Yu, Liu Jing-He. Growth, structure and spectral properties of Yb3+-doped KY(WO4)2 laser crystal. Acta Physica Sinica, 2006, 55(6): 3141-3146. doi: 10.7498/aps.55.3141
    [11] Qiu Hua-Tan, Wang You-Nian, Ma Teng-Cai. . Acta Physica Sinica, 2002, 51(6): 1332-1337. doi: 10.7498/aps.51.1332
    [12] YU JIAN-HUA, HUANG JIAN-JUN. PLASMA DIAGNOSIS OF RF DISCHARGE BY USING IMPEDANCE MEASUREMENT. Acta Physica Sinica, 2001, 50(12): 2403-2407. doi: 10.7498/aps.50.2403
    [13] LIU HONG-PING, GUO YUAN-QING, LIU XIAO-YONG, LIN JIE-LI, LI FENG-YAN, LI JIN-RUI, LIU YU-YAN. CO LASER MAGNETIC RESONANCE SPECTRUM OF 15N16O AND ITS ANALYSIS WITH SPECTRA OF 15N17O AND 15N18O. Acta Physica Sinica, 1999, 48(11): 2030-2037. doi: 10.7498/aps.48.2030
    [14] WANG YU-MIN, A. ERNEST. TRANSIENT CURRENT ANALYSIS IN TOWNSEND DISCHARGE WITH VARIOUS KINDS OF METASTABLES. Acta Physica Sinica, 1988, 37(6): 996-1002. doi: 10.7498/aps.37.996
    [15] 联合散射分子光谱分析. Acta Physica Sinica, 1961, 17(2): 113-116. doi: 10.7498/aps.17.113
    [16] КОЛИЧЕСТВЕННОЕ СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ ПРИМЕСЕЙ В МЕТАЛЕ ЦИРКОНИЯ. Acta Physica Sinica, 1959, 15(6): 311-315. doi: 10.7498/aps.15.311
    [17] HSU SHENG-MBI, HO I-DJEN. A DISCUSSION ON THE SLOPE OF THE CALIBRATION CURVE IN SPECTROCHEMICAL ANALYSIS. Acta Physica Sinica, 1959, 15(4): 178-185. doi: 10.7498/aps.15.178
    [18] KEN TA-KANG, HAN THANG-YU, YU PO, CHANG KUNG-SOO, WANG HUNG-CHANG. UNIVERSAL METHODS FOR THE SPECTROCHEMICAL ANALYSIS OF ALLOY STEELS. Acta Physica Sinica, 1959, 15(4): 173-177. doi: 10.7498/aps.15.173
    [19] Shi Shi-yuan;Yang Ming-zhen. AN INTEGRAL PHOTOELECTRIC METHOD FOR QUANTITATIVE SPECTRO-ANAIYSIS. Acta Physica Sinica, 1956, 12(6): 577-584. doi: 10.7498/aps.12.577
    [20] HO I-DJEN, WANG THANG-SOO. SPECTROCHEMICAL ANALYSIS OF COPPER IN IRON ORES. Acta Physica Sinica, 1954, 10(4): 347-364. doi: 10.7498/aps.10.347
Metrics
  • Abstract views:  4870
  • PDF Downloads:  109
  • Cited By: 0
Publishing process
  • Received Date:  03 February 2018
  • Accepted Date:  18 April 2018
  • Published Online:  20 July 2019

/

返回文章
返回