Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Piezo-electrochemical coupling of AgNbO3 piezoelectric nanomaterials

Hong Yuan-Ting Ma Jiang-Ping Wu Zheng Ying Jing-Shi You Hui-Lin Jia Yan-Min

Citation:

Piezo-electrochemical coupling of AgNbO3 piezoelectric nanomaterials

Hong Yuan-Ting, Ma Jiang-Ping, Wu Zheng, Ying Jing-Shi, You Hui-Lin, Jia Yan-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this work, the AgNbO3 piezoelectric nanomaterials are hydrothermally synthesized, and they have an average particle size of~1 m, which is obtained from scanning electron microscopy pattern. The AgNbO3 nanomaterial possesses an orthorhombic crystal structure with an mm2 point group symmetry, indicated by the X-ray powder diffraction analysis result. The piezo-electrochemical coupling of AgNbO3 is characterized, and its physical mechanism is discussed. Under an external mechanical vibration, the surfaces of the piezoelectric AgNbO3 nanomaterials will generate a large number of positive and negative electric charges. Due to the existence of spontaneous polarization, these positive and negative electrical carriers are respectively distributed on the top surface and bottom surface of AgNbO3 and can further induce the generation of some strong oxidation middle active species such as hydroxyl radicals in solution on the basis of some special chemical redox reactions, realizing the piezo-electrochemical coupling. Therefore, we can consider the piezo-electrochemical coupling as the product of the piezoelectric effect and the electrochemical redox effect. Utilizing the strong piezo-electrochemical coupling, a practical application in mechano-catalysis is further developed to decompose dye solution under a driven vibration. After experiencing~60 min vibration with AgNbO3 nanomaterial as mechano-catalyst,~70% rhodamine B (~5 mg/L) is decomposed. Prior to the vibration, the rhodamine B solution with the addition of AgNbO3 catalyst is slowly stirred for 30 min to ensure the establishment of the physical adsorptiondesorption equilibrium between catalyst and dye. It is difficult to directly exert a mechanical stress on the micro/nanoparticles. Here, an ultrasonic source with a vibration frequency of~40 kHz is employed to exert a stress to compress and stretch the AgNbO3 particles through utilizing micro-bubble collapse forces during ultrasonic cavitations, which needs the AgNbO3 particle size to be roughly identical with the diameter (~m) of micro-bubble. Our mechanocatalytic dye decomposition experiment is conducted at room-temperature and in a dark environment to avoid the influence of photocatalysis. The slight increase of temperature of the dye solution in the ultrasonic vibration process has no obvious influence on the dye decomposition efficiency, which has been confirmed from our experiment. Through a technology of fluorescence spectrum trapping, the intermediate active product in the piezo-electrochemical coupling process-the strongly oxidized hydroxyl radicals, is successfully observed. With the increase of vibration time, the number of hydroxyl radicals obviously increases, which proves that the piezo-electrochemical coupling plays a key role in our mechano-catalytic process. After using AgNbO3 catalyst in cyclic decomposition of rhodamine B 5 times, no obvious reduction in the piezo-electrochemical coupling performance occurs. The AgNbO3 nanomaterial possesses an efficient piezo-electrochemical coupling for mechano-catalysis, and it has the advantages of high decomposition efficiency and reusability, and potential applications in vibration decomposing dye.
      Corresponding author: Wu Zheng, wuzheng@zjnu.edu.cn;ymjia@zjnu.edu.cn ; Jia Yan-Min, wuzheng@zjnu.edu.cn;ymjia@zjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51502266) and the Public Welfare Technology Application Research Project of Zhejiang Province, China (Grant No. LGG18E020005).
    [1]

    Mueller M, Buser H 1995 Environ. Sci. Technol. 29 2031

    [2]

    Wu H P, Ling H, Zhang Z, Li Y B, Liang L H, Chai G Z 2017 Acta Phys. Sin. 66 167702 (in Chinese)[吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟 2017 物理学报 66 167702]

    [3]

    Xu X L, Xiao L B, Jia Y M, Hong Y T, Ma J P, Wu Z 2018 J. Electro. Mater. 47 536

    [4]

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin. 62 158104 (in Chinese)[赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104]

    [5]

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese)[李冬冬, 王丽莉 2012 物理学报 61 034212]

    [6]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese)[李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102]

    [7]

    Dong X P, Cheng F X 2015 J. Mater. Chem. A 3 23642

    [8]

    Ikeda S, Takata T, Kondo T, Hitoki G, Hara M, Kondo J N, Domen K, Hosono H, Kawazoe H, Tanaka A 1998 Chem. Commun. 20 2185

    [9]

    Hara M, Komoda M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo J N, Domen K 2000 J. Phys. Chem. B 104 780

    [10]

    Ikeda S, Takata T, Komoda M, Hara M, Kondo J N, Domen K, Tanaka A, Hosono H, Kawazoe H 1999 Chem. Phys. 1 4485

    [11]

    Zhang J, Wu Z, Jia Y M, Kan J W, Cheng G M 2013 Sensors 13 367

    [12]

    Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776

    [13]

    Wu Z, Ma K, Cao Y, Jia Y M, Xie A X, Chen J R, Zhang Y H, Li H M, Zheng R K, Luo H S 2013 Appl. Phys. Lett. 103 112904

    [14]

    Xia Y T, Jia Y M, Qian W Q, Xu X L, Wu Z, Han Z C, Hong Y T, You H L, Ismail M, Bai G, Wang L W 2017 Metals 7 122

    [15]

    Lin H, Wu Z, Jia Y M, Lin W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907

    [16]

    Volkov A A, Gorshunov B P, Komandin G, Fortin W, Kugel G E, Kania A, Grigas J 1995 J. Phys.:Condens Matter 7 785

    [17]

    You H L, Wu Z, Wang L, Jia Y M, Li S, Zou J 2018 Chemosphere 199 531

    [18]

    Wang Z Y, Liu Y Y, Huang B B, Dai Y, Lou Z Z, Wang G, Zhang X Y, Qin X Y 2014 Phys. Chem. Chem. Phys. 16 2758

    [19]

    Huang D, J Z P, Li C S, Yao C M, Guo J 2014 Acta Phys. Sin. 63 247101 (in Chinese)[黄丹, 鞠志萍, 李长生, 姚春梅, 郭进 2014 物理学报 63 247101]

    [20]

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801 (in Chinese)[佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801]

    [21]

    Li G Q, Kako T, Wang D F, Zou Z G, Ye J H 2007 J. Solid State Chem. 180 2845

    [22]

    Kato H, Kobayashi H, Kudo A 2002 J. Phys. Chem. B 106 12441

    [23]

    Li G Q, Yang N, Wang W L, Zhang M F 2010 Electrochimica Acta 55 7235

    [24]

    Fu D, Endo M, Taniguchi H 2007 Appl. Phys. Lett. 90 252907

    [25]

    Moriwake H, Konishi A, Ogawa T, Fisher C A J, Kuwabara A, Fu D 2016 J. Appl. Phys. 119 064102

    [26]

    Kania A, Roleder K, Lukaszewski M 1983 Ferroelectrics 52 265

    [27]

    You H L, Wu Z, Jia Y M, Xu X L, Xia Y T, Han Z C, Wang Y 2017 Chemosphere 183 528

    [28]

    Wang X D, Song J H, Liu J, Wang Z L 2007 Science 316 102

    [29]

    You H L, Jia Y M, Wu Z, Xu X L, Qian W Q, Xia Y T, Ismail M 2017 Electrochem. Commun. 79 55

    [30]

    Eddingsaas N C, Suslick K S 2006 Nature 444 163

    [31]

    Xu X L, Jia Y M, Xiao L B, Wu Z 2018 Chemosphere 193 1143

    [32]

    Wu J, Mao W J, Wu Z, Xu X L, You H L, Xue A X, Jia Y M 2016 Nanoscale 8 7343

    [33]

    Qian W Q, Wu Z, Jia Y M, Hong Y T, Xu X L, You H L, Zheng Y Q, Xia Y T 2017 Electrochem. Commun. 81 124

    [34]

    Nan C W 2004 Prog. Nat. Sci. 04 390 (in Chinese)[南策文 2004 自然科学进展 04 390]

    [35]

    Wang Z Y, Hu J, Yua M F 2006 Appl. Phys. Lett. 89 263119

    [36]

    Yu D, Zhao M L, Wang C L, Wang L H, Su W B 2016 Appl. Phys. Lett. 109 032904

    [37]

    Gao Y H, Geng X P 2004 J. Chengde Petroleum College 03 39 (in Chinese)[高永慧, 耿小丕 2004 承德石油高等专科学校学报 03 39]

    [38]

    Lee K K, Han G Y, Yoon K J, Lee B K 2004 Catal. Today 93 81

    [39]

    Konieczny A, Mondal K, Wiltowski T, Dydo P 2008 J. Hydrogen Energy 33 264

    [40]

    Zhao J B, Du H L, Qu S B, Zhang H M, Xu Z 2011 Mater. Sci. 1 17 (in Chinese)[赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓 2011 材料科学 1 17]

    [41]

    Wu W M, Liang S J, Chen Y, Shen L J, Yuan R S, Wu L 2013 Mater. Res. Bull. 48 1618

    [42]

    Shu H M, Xie J M, Xua H, Li H M, Gu Z, Sun G S, Xu Y G 2010 J. Alloys Compd. 496 633

  • [1]

    Mueller M, Buser H 1995 Environ. Sci. Technol. 29 2031

    [2]

    Wu H P, Ling H, Zhang Z, Li Y B, Liang L H, Chai G Z 2017 Acta Phys. Sin. 66 167702 (in Chinese)[吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟 2017 物理学报 66 167702]

    [3]

    Xu X L, Xiao L B, Jia Y M, Hong Y T, Ma J P, Wu Z 2018 J. Electro. Mater. 47 536

    [4]

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin. 62 158104 (in Chinese)[赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104]

    [5]

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese)[李冬冬, 王丽莉 2012 物理学报 61 034212]

    [6]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese)[李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102]

    [7]

    Dong X P, Cheng F X 2015 J. Mater. Chem. A 3 23642

    [8]

    Ikeda S, Takata T, Kondo T, Hitoki G, Hara M, Kondo J N, Domen K, Hosono H, Kawazoe H, Tanaka A 1998 Chem. Commun. 20 2185

    [9]

    Hara M, Komoda M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo J N, Domen K 2000 J. Phys. Chem. B 104 780

    [10]

    Ikeda S, Takata T, Komoda M, Hara M, Kondo J N, Domen K, Tanaka A, Hosono H, Kawazoe H 1999 Chem. Phys. 1 4485

    [11]

    Zhang J, Wu Z, Jia Y M, Kan J W, Cheng G M 2013 Sensors 13 367

    [12]

    Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776

    [13]

    Wu Z, Ma K, Cao Y, Jia Y M, Xie A X, Chen J R, Zhang Y H, Li H M, Zheng R K, Luo H S 2013 Appl. Phys. Lett. 103 112904

    [14]

    Xia Y T, Jia Y M, Qian W Q, Xu X L, Wu Z, Han Z C, Hong Y T, You H L, Ismail M, Bai G, Wang L W 2017 Metals 7 122

    [15]

    Lin H, Wu Z, Jia Y M, Lin W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907

    [16]

    Volkov A A, Gorshunov B P, Komandin G, Fortin W, Kugel G E, Kania A, Grigas J 1995 J. Phys.:Condens Matter 7 785

    [17]

    You H L, Wu Z, Wang L, Jia Y M, Li S, Zou J 2018 Chemosphere 199 531

    [18]

    Wang Z Y, Liu Y Y, Huang B B, Dai Y, Lou Z Z, Wang G, Zhang X Y, Qin X Y 2014 Phys. Chem. Chem. Phys. 16 2758

    [19]

    Huang D, J Z P, Li C S, Yao C M, Guo J 2014 Acta Phys. Sin. 63 247101 (in Chinese)[黄丹, 鞠志萍, 李长生, 姚春梅, 郭进 2014 物理学报 63 247101]

    [20]

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801 (in Chinese)[佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801]

    [21]

    Li G Q, Kako T, Wang D F, Zou Z G, Ye J H 2007 J. Solid State Chem. 180 2845

    [22]

    Kato H, Kobayashi H, Kudo A 2002 J. Phys. Chem. B 106 12441

    [23]

    Li G Q, Yang N, Wang W L, Zhang M F 2010 Electrochimica Acta 55 7235

    [24]

    Fu D, Endo M, Taniguchi H 2007 Appl. Phys. Lett. 90 252907

    [25]

    Moriwake H, Konishi A, Ogawa T, Fisher C A J, Kuwabara A, Fu D 2016 J. Appl. Phys. 119 064102

    [26]

    Kania A, Roleder K, Lukaszewski M 1983 Ferroelectrics 52 265

    [27]

    You H L, Wu Z, Jia Y M, Xu X L, Xia Y T, Han Z C, Wang Y 2017 Chemosphere 183 528

    [28]

    Wang X D, Song J H, Liu J, Wang Z L 2007 Science 316 102

    [29]

    You H L, Jia Y M, Wu Z, Xu X L, Qian W Q, Xia Y T, Ismail M 2017 Electrochem. Commun. 79 55

    [30]

    Eddingsaas N C, Suslick K S 2006 Nature 444 163

    [31]

    Xu X L, Jia Y M, Xiao L B, Wu Z 2018 Chemosphere 193 1143

    [32]

    Wu J, Mao W J, Wu Z, Xu X L, You H L, Xue A X, Jia Y M 2016 Nanoscale 8 7343

    [33]

    Qian W Q, Wu Z, Jia Y M, Hong Y T, Xu X L, You H L, Zheng Y Q, Xia Y T 2017 Electrochem. Commun. 81 124

    [34]

    Nan C W 2004 Prog. Nat. Sci. 04 390 (in Chinese)[南策文 2004 自然科学进展 04 390]

    [35]

    Wang Z Y, Hu J, Yua M F 2006 Appl. Phys. Lett. 89 263119

    [36]

    Yu D, Zhao M L, Wang C L, Wang L H, Su W B 2016 Appl. Phys. Lett. 109 032904

    [37]

    Gao Y H, Geng X P 2004 J. Chengde Petroleum College 03 39 (in Chinese)[高永慧, 耿小丕 2004 承德石油高等专科学校学报 03 39]

    [38]

    Lee K K, Han G Y, Yoon K J, Lee B K 2004 Catal. Today 93 81

    [39]

    Konieczny A, Mondal K, Wiltowski T, Dydo P 2008 J. Hydrogen Energy 33 264

    [40]

    Zhao J B, Du H L, Qu S B, Zhang H M, Xu Z 2011 Mater. Sci. 1 17 (in Chinese)[赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓 2011 材料科学 1 17]

    [41]

    Wu W M, Liang S J, Chen Y, Shen L J, Yuan R S, Wu L 2013 Mater. Res. Bull. 48 1618

    [42]

    Shu H M, Xie J M, Xua H, Li H M, Gu Z, Sun G S, Xu Y G 2010 J. Alloys Compd. 496 633

  • [1] Niu Jia-Lin, Dong Si-Yuan, Wei Yong-Xing, Jin Chang-Qing, Nan Rui-Hua, Yang Bin. Phase transition characteristics, electrical and optical properties of AgNbO3 crystals grown by flux method. Acta Physica Sinica, 2024, 73(3): 038101. doi: 10.7498/aps.73.20230984
    [2] Jia Yan-Min, Wang Xiao-Xing, Zhang Qi-Chang, Wu Zheng. Research progress in enhancement strategies and mechanisms of piezo-electro-chemical coupling. Acta Physica Sinica, 2023, 72(8): 087701. doi: 10.7498/aps.72.20222078
    [3] Wang Pan, Zong Yi-Xin, Wen Hong-Yu, Xia Jian-Bai, Wei Zhong-Ming. Electronic properties of two-dimensional Janus atomic crystal. Acta Physica Sinica, 2021, 70(2): 026801. doi: 10.7498/aps.70.20201406
    [4] Cui Yong, Wu Ming, Song Xiao, Huang Yu-Ping, Jia Qi, Tao Yun-Fei, Wang Chen. Research progress of small low-frequency transmitting antenna. Acta Physica Sinica, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [5] Wei Xiao-Wei, Tao Hong, Zhao Chun-Lin, Wu Jia-Gang. Piezoelectric and electrocaloric properties of high performance potassium sodium niobate-based lead-free ceramics. Acta Physica Sinica, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [6] Li Fei, Zhang Shu-Jun, Xu Zhuo. Piezoelectricity—An important property for ferroelectrics during last 100 years. Acta Physica Sinica, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [7] Deng Chang-Fa, Yan Shao-An, Wang Dong, Peng Jin-Feng, Zheng Xue-Jun. Optically modulated electromechanical coupling properties of single GaN nanobelt based on conductive atomic force microscopy. Acta Physica Sinica, 2019, 68(23): 237304. doi: 10.7498/aps.68.20191097
    [8] Zhu Zhen-Ye. Piezoelectric effect mechanism in lead-free tetragonal perovskite short-period superlattices. Acta Physica Sinica, 2018, 67(7): 077701. doi: 10.7498/aps.67.20172710
    [9] Liao Tao, Sun Xiao-Wei, Song Ting, Tian Jun-Hong, Kang Tai-Feng, Sun Wei-Bin. Tunable bandgaps in novel two-dimensional piezoelectric phononic crystal slab. Acta Physica Sinica, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [10] Zhou Yong, Li Chun-Jian, Pan Yu-Rong. Magnetoelectric effect analysis of magnetostrictive/piezoelectric laminated composites. Acta Physica Sinica, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [11] Wu Hua-Ping, Ling Huan, Zhang Zheng, Li Yan-Biao, Liang Li-Hua, Chai Guo-Zhong. Research progress on photocatalytic activity of ferroelectric materials. Acta Physica Sinica, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [12] Zhang Tian-Le, Huang Xi, Zheng Kai, Zhang Xin-Wu, Wang Yu-Jie, Wu Li-Ming, Zhang Xiao-Qing, Zheng Jie, Zhu Biao. Influence of polarization voltage on piezoelectric performance of polypropylene piezoelectret films. Acta Physica Sinica, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [13] Zhang Xin-Wu, Zhang Xiao-Qing. Piezoelectric and acoustic behavior of polypropylene piezoelectret films. Acta Physica Sinica, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [14] Xu Bo, Wang Shu-Lin, Li Lai-Qiang, Li Sheng-Juan. Structure evolvement of solid particles and mechano-chemical effect. Acta Physica Sinica, 2012, 61(9): 090201. doi: 10.7498/aps.61.090201
    [15] Ma Li, Tan Zhen-Bing, Tan Chang-Ling, Liu Guang-Tong, Yang Chang-Li, Lü Li. Fabrication of graphene nanoribbons through mechanical cleavage and their electronic transport properties at low temperature. Acta Physica Sinica, 2011, 60(10): 107302. doi: 10.7498/aps.60.107302
    [16] Bian Lei-Xiang, Wen Yu-Mei, Li Ping. Analysis of magneto-mechano-electronic coupling factors in magnetostrictive/piezoelectric laminated composite. Acta Physica Sinica, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [17] Fan Jun-Feng, Zhang Ning. Magnetoelectric cuopling in laminate composites Tb1-xDyxFe2-y and Fe-doped BaTiO3. Acta Physica Sinica, 2007, 56(10): 6056-6060. doi: 10.7498/aps.56.6056
    [18] Zhang Chao-Hui, Luo Jian-Bin, Wen Shi-Zhu. Effects of nano-scale particles in chemical mechanical polishing process. Acta Physica Sinica, 2005, 54(5): 2123-2127. doi: 10.7498/aps.54.2123
    [19] Yang Xin-Sheng, Wang Yu, Dong Liang, Zhang Feng, Qi Li-Zhen. Electrochromic effect of nanostructured WO3 bulk. Acta Physica Sinica, 2004, 53(8): 2724-2727. doi: 10.7498/aps.53.2724
    [20] Chen Gang-Jin, Xia Zhong-Fu. Study on piezoelectricity of hybrid films consisting of porous PTFE and Teflon FEP. Acta Physica Sinica, 2004, 53(8): 2715-2719. doi: 10.7498/aps.53.2715
Metrics
  • Abstract views:  7084
  • PDF Downloads:  396
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2018
  • Accepted Date:  06 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回