Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and simulation of output mode conversion structure of relativistic magnetron with all cavity output

Yang Wen-Yuan Dong Ye Dong Zhi-Wei

Citation:

Design and simulation of output mode conversion structure of relativistic magnetron with all cavity output

Yang Wen-Yuan, Dong Ye, Dong Zhi-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A relativistic magnetron using all cavity extraction and semi-transparent cathode has the virtues of compactness, high output power and high efficiency. The three-dimensional particle-in-cell simulations show that 1.15 GW output microwave with an efficiency about 50% can be obtained at S-band with pure TE11 mode of the fan waveguide. However, due to the fact that the output structure is composed of three detached fan waveguides, mode conversion structure in the output region is required for the convenience of practical applications. Therefore, two mode conversion structures are studied for the output mode conversion. The first structure is to widen gradually or abruptly the fan waveguide in the azimuthal direction from a given position (starting point) along the microwave transport direction. And then the three fan waveguides are connected into one coaxial waveguide. The effects of the position of the starting point on the beam-wave interaction and microwave extraction are numerically studied. For the convenience of description, we define L as the axial distance between the center of the output coupling hole and starting point. Simulation results show that for the abrupt and gradual variation case, when the length of L changes in a relatively wide region, the output power is larger than 1.0 GW in TEM mode at S-band. It is about 90% of the conventional fan waveguide with 1.15 GW. For the gradual variation case, the optimal value of L equals 10.0 cm, and the corresponding output power is beyond 1.0 GW. For the abrupt variation case, the optimal value of L equals 13.75 cm, the corresponding output power is about 1.15 GW. But in the abrupt variation case, the output power is a little more sensitive to the value of L. The second structure is to convert the fan waveguide into a rectangular waveguide. Acompound waveguide composed of a section of fan waveguide and a section of rectangular waveguide is designed for studying its feasibility. In the compound waveguide, the wide edges of the cross section of the rectangular waveguide are tangent to the inner and outer arc of the fan cross section respectively. And the narrow edges cross the end points of the outer arc. Simulation results show that in the compound waveguide the microwave with TE11 mode of the fan waveguide input at the inlet can be changed into the TE10 mode of the rectangular waveguide at the outlet with almost no power loss. In all, the output microwave power larger than 1.0 GW could be obtained after using the two proposed mode conversion structures. In practical applications, one could choose the relevant mode conversion structure according to the requirement.
      Corresponding author: Yang Wen-Yuan, yang_wenyuan@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305015, 11475155, 11875094) and the Science Foundation of China Academy of Engineering Physics (Grant No. 2015B0402091).
    [1]

    Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York: Institute of Electrical and Electronics Engineer, Inc.) pp54-57

    [2]

    Kim H J, Choi J J 2007 IEEE Trans. Dielectr. Elect. Insul. 14 1045

    [3]

    Lau Y Y, Luginsland J W, Cartwright K L, Simon D H, Tang W, Hoff B W, Gilgenbach R M 2010 Phys. Plasmas 17 033102

    [4]

    Liu M Q, Fuks M I, Schamiloglu E, Liu C L 2012 IEEE Trans. Plasma Sci. 40 1569

    [5]

    Leopold J G, Shlapakovski A S, Sayapin A, Krasik Y E 2015 IEEE Trans. Plasma Sci. 43 3168

    [6]

    Yang W, Dong Z, Yang Y, Dong Y 2014 IEEE Trans. Plasma Sci. 42 3458

    [7]

    Shi D F, Wang H G, Li W, Qian B L 2013 Acta Phys. Sin. 62 151101 (in Chinese) [史迪夫, 王弘刚, 李伟, 钱宝良 2013 物理学报 62 151101]

    [8]

    Vintizenko I I, Mashchenko A I 2018 Instrum. Exp. Tech. 61 65

    [9]

    Fuks M I, Kovalev N F, Andreev A D, Schamiloglu E 2006 IEEE Trans. Plasma Sci. 34 620

    [10]

    Daimon M, Jiang W 2007 Appl. Phys. Lett. 91 191503

    [11]

    Fuks M I, Schamiloglu E 2010 IEEE Trans. Plasma Sci. 38 1302

    [12]

    Li W, Liu Y Q, Zhang J, Yang H W, Qian B L 2012 Phys. Plasmas 19 113108

    [13]

    Leach C, Prasad S, Fuks M I, Buchenauer J, McConaha J W, Schamiloglu E 2017 IEEE Trans. Plasma Sci. 45 282

    [14]

    Jiang Y Q, Li T M, Hao J L 2016 High Power Laser and Particle Beams 28 033003 (in Chinese) [姜亚群, 李天明, 郝晶龙 2016 强激光与粒子束 28 033003]

    [15]

    Greenwood A D 2006 US Patent 7 106 004 [2006-9-12]

    [16]

    Yang W Y, Dong Y, Dong Z W 2016 Acta Phys. Sin. 65 248401 (in Chinese) [杨温渊, 董烨, 董志伟 2016 物理学报 65 248401]

    [17]

    Wang D, Qin F, Yang Y L, Zhang Y, Xu S 2016 High Power Laser and Particle Beams 28 033013 (in Chinese) [王冬, 秦奋, 杨郁林, 张勇, 徐莎 2016 强激光与粒子束 28 033013]

    [18]

    Shi D F, Qian B L, Wang H G, Li W, Du G X 2017 Sci. Rep. 7 1491

    [19]

    Shi D F, Qian B L, Wang H G, Li W, Du G X 2017 J. Phys. D: Appl. Phys. 49 465104

    [20]

    Zhang K Q, Li D J 2001 Electromagnetic Theory in Microwaves and Optoelectronics (1st Ed.) (Beijing: Publishing House of Electronics Industry) pp279-297 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第1版) (北京: 电子工业出版社)第279297页]

  • [1]

    Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York: Institute of Electrical and Electronics Engineer, Inc.) pp54-57

    [2]

    Kim H J, Choi J J 2007 IEEE Trans. Dielectr. Elect. Insul. 14 1045

    [3]

    Lau Y Y, Luginsland J W, Cartwright K L, Simon D H, Tang W, Hoff B W, Gilgenbach R M 2010 Phys. Plasmas 17 033102

    [4]

    Liu M Q, Fuks M I, Schamiloglu E, Liu C L 2012 IEEE Trans. Plasma Sci. 40 1569

    [5]

    Leopold J G, Shlapakovski A S, Sayapin A, Krasik Y E 2015 IEEE Trans. Plasma Sci. 43 3168

    [6]

    Yang W, Dong Z, Yang Y, Dong Y 2014 IEEE Trans. Plasma Sci. 42 3458

    [7]

    Shi D F, Wang H G, Li W, Qian B L 2013 Acta Phys. Sin. 62 151101 (in Chinese) [史迪夫, 王弘刚, 李伟, 钱宝良 2013 物理学报 62 151101]

    [8]

    Vintizenko I I, Mashchenko A I 2018 Instrum. Exp. Tech. 61 65

    [9]

    Fuks M I, Kovalev N F, Andreev A D, Schamiloglu E 2006 IEEE Trans. Plasma Sci. 34 620

    [10]

    Daimon M, Jiang W 2007 Appl. Phys. Lett. 91 191503

    [11]

    Fuks M I, Schamiloglu E 2010 IEEE Trans. Plasma Sci. 38 1302

    [12]

    Li W, Liu Y Q, Zhang J, Yang H W, Qian B L 2012 Phys. Plasmas 19 113108

    [13]

    Leach C, Prasad S, Fuks M I, Buchenauer J, McConaha J W, Schamiloglu E 2017 IEEE Trans. Plasma Sci. 45 282

    [14]

    Jiang Y Q, Li T M, Hao J L 2016 High Power Laser and Particle Beams 28 033003 (in Chinese) [姜亚群, 李天明, 郝晶龙 2016 强激光与粒子束 28 033003]

    [15]

    Greenwood A D 2006 US Patent 7 106 004 [2006-9-12]

    [16]

    Yang W Y, Dong Y, Dong Z W 2016 Acta Phys. Sin. 65 248401 (in Chinese) [杨温渊, 董烨, 董志伟 2016 物理学报 65 248401]

    [17]

    Wang D, Qin F, Yang Y L, Zhang Y, Xu S 2016 High Power Laser and Particle Beams 28 033013 (in Chinese) [王冬, 秦奋, 杨郁林, 张勇, 徐莎 2016 强激光与粒子束 28 033013]

    [18]

    Shi D F, Qian B L, Wang H G, Li W, Du G X 2017 Sci. Rep. 7 1491

    [19]

    Shi D F, Qian B L, Wang H G, Li W, Du G X 2017 J. Phys. D: Appl. Phys. 49 465104

    [20]

    Zhang K Q, Li D J 2001 Electromagnetic Theory in Microwaves and Optoelectronics (1st Ed.) (Beijing: Publishing House of Electronics Industry) pp279-297 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第1版) (北京: 电子工业出版社)第279297页]

Metrics
  • Abstract views:  4107
  • PDF Downloads:  51
  • Cited By: 0
Publishing process
  • Received Date:  27 February 2018
  • Accepted Date:  04 June 2018
  • Published Online:  20 September 2019

/

返回文章
返回