Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of imperfect experimental condition on generation of Schrödinger cat state

Zhang Na-Na Li Shu-Jing Yan Hong-Mei He Ya-Ya Wang Hai

Citation:

Effect of imperfect experimental condition on generation of Schrödinger cat state

Zhang Na-Na, Li Shu-Jing, Yan Hong-Mei, He Ya-Ya, Wang Hai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Schrödinger cat state is an important non-classical state, and it can be used in quantum teleportation, quantum computation and quantum repeater. Schrödinger cat state is usually obtained experimentally by subtracting one photon from a squeezed-vacuum state. The fidelity between a photon-subtracted squeezed state and a cat state can be very high under suitable parameters. However, the quality of the generated state will be affected by the imperfect experimental conditions. In this paper, the effect of imperfect experimental conditions on the generation of cat state is theoretically calculated and analyzed.
    The input squeezed-vacuum field is represented by Weyl characteristic function, which contains the fluctuation variance of the squeezed and amplified noises. The characteristic function of generated state is obtained by using the transmission matrix of beam splitter and the measurement operator of single-photon detector. We acquire the expression of Wigner function of generated state by the Fourier transform of the Weyl characteristic function. The fidelity is calculated by using the formula F=1/π∫d2ζC1(ζ)C|cat->(ζ), where C1(ζ) and C|cat->(ζ) represent Weyl characteristic function of the generated state and the Schrodinger cat state, respectively. The imperfection of the input squeezed state, the imperfection of the single-photon detector and the loss of the balanced homodyne detection are included in our theoretical model. We calculate the Wigner function at the phase-space origin W(0) and the fidelity in terms of different experimental parameters.
    The results show that the fidelity and negativity of W(0) decrease with squeezing purity decreasing. A pure squeezed-vacuum state is composed of even photon number states. In the case of impure squeezing, some odd photon number states appear in the photon number distribution. After subtracting one photon from the impure squeezing state, the generated state consists of not only odd photon number state but also even photon states, which degrades the fidelity of the generated state. The lower squeezing purity is required to meet the demand for W(0)<0 under the condition of higher squeezing degree. There is an optimal squeezing degree to maximize the fidelity of generated state with impure squeezing. The use of inefficient on-ff single-photon detector and the loss of the balanced homodyne detection will further reduce the fidelity of the generated state. Under the practical experimental condition:squeezing degree s=-3 dB, the squeezing purity μ=99% and the quantum efficiency of balanced homodyne detection η=98%, the fidelity of generated state can reach 0.88 with using a commercially available on-off single-photon detector. This work can provide theoretical guidance for generating a high-quality Schrödinger cat state.
    • Funds: Project supported by the Research and Development Program of China (Grant Nos. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 11475109, 11834010, 11604191), and the Fund for Shanxi "1331 Project" Key Subjects Construction.
    [1]

    Yurke B, Schleich W, Walls D F 1990 Phys. Rev. A 42 1703

    [2]

    Song S, Caves C M, Yurke B 1990 Phys. Rev. A 41 5261

    [3]

    Minganti F, Bartolo N, Lolli J, Casteels W, Ciuti C 2016 Sci. Rep. 6 26987

    [4]

    Johnson K G, Wong-Campos J D, Neyenhuis B, Mizrahi J, Monroe C 2017 Nat. Commun. 8 697

    [5]

    van Enk S J, Hirota O 2001 Phys. Rev. A 64 022313

    [6]

    Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319

    [7]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503

    [8]

    Monroe C, Meekhof D M, King B E, Wineland D J 1996 Science 272 1131

    [9]

    Hofheinz M, Wang H, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Sank D, Wenner J, Martinis J M, Cleland A N 2009 Nature 459 546

    [10]

    Ourjoumtsev A, Brouri R T, Laurat J, Grangier P 2006 Science 312 83

    [11]

    Takahashi H, Wakui K, Suzuki S, Takeoka M, Hayasaka K, Furusawa A, Sasaki M 2008 Phys. Rev. Lett. 101 233605

    [12]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604

    [13]

    Kim M S, Park E, Knight P L, Jeong H 2005 Phys. Rev. A 71 043805

    [14]

    Suzuki S, Tsujino K, Kannari F, Sasaki M 2006 Opt. Commun. 259 758

    [15]

    Wakui K, Takahashi H, Furusawa A, Sasaki M 2007 Opt. Express 15 3568

    [16]

    Dakna M, Anhut T, Opatrny T, Knöll L, Welsch D G 1997 Phys. Rev. A 55 3184

    [17]

    Wenger J, Tualle-Brouri R, Grangier P 2004 Phys. Rev. Lett. 92 153601

    [18]

    W Asavanant, K Nakashima, Y Shiozawa, J Yoshikawa, A Furusawa 2017 Opt. Express 25 32227

    [19]

    Morin O, Liu J, Huang K, Barbosa F, Fabre C, Laurat J 2014 J. Vis. Exp. 87 e51224

    [20]

    Laghaout A, Neergaard-Nielsen J S, Rigas I, Kragh C, Tipsmark A, Andersen U L 2013 Phys. Rev. A 87 043826

    [21]

    Laghaout A, Neergaard-Nielsen J S, Rigas I 2013 Conference on Lasers and Electron-Optics Europe and International Quantum Electronics Conference,IEEE 1 1

    [22]

    Kim M S, Lee J, Munro W J 2002 Phys. Rev. A 66 030301

    [23]

    Hyukjoon K, Hyunseok J 2015 Phys. Rev. A 91 012340

    [24]

    Lee C T 1995 Phys. Rev. A 52 3374

  • [1]

    Yurke B, Schleich W, Walls D F 1990 Phys. Rev. A 42 1703

    [2]

    Song S, Caves C M, Yurke B 1990 Phys. Rev. A 41 5261

    [3]

    Minganti F, Bartolo N, Lolli J, Casteels W, Ciuti C 2016 Sci. Rep. 6 26987

    [4]

    Johnson K G, Wong-Campos J D, Neyenhuis B, Mizrahi J, Monroe C 2017 Nat. Commun. 8 697

    [5]

    van Enk S J, Hirota O 2001 Phys. Rev. A 64 022313

    [6]

    Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319

    [7]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503

    [8]

    Monroe C, Meekhof D M, King B E, Wineland D J 1996 Science 272 1131

    [9]

    Hofheinz M, Wang H, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Sank D, Wenner J, Martinis J M, Cleland A N 2009 Nature 459 546

    [10]

    Ourjoumtsev A, Brouri R T, Laurat J, Grangier P 2006 Science 312 83

    [11]

    Takahashi H, Wakui K, Suzuki S, Takeoka M, Hayasaka K, Furusawa A, Sasaki M 2008 Phys. Rev. Lett. 101 233605

    [12]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604

    [13]

    Kim M S, Park E, Knight P L, Jeong H 2005 Phys. Rev. A 71 043805

    [14]

    Suzuki S, Tsujino K, Kannari F, Sasaki M 2006 Opt. Commun. 259 758

    [15]

    Wakui K, Takahashi H, Furusawa A, Sasaki M 2007 Opt. Express 15 3568

    [16]

    Dakna M, Anhut T, Opatrny T, Knöll L, Welsch D G 1997 Phys. Rev. A 55 3184

    [17]

    Wenger J, Tualle-Brouri R, Grangier P 2004 Phys. Rev. Lett. 92 153601

    [18]

    W Asavanant, K Nakashima, Y Shiozawa, J Yoshikawa, A Furusawa 2017 Opt. Express 25 32227

    [19]

    Morin O, Liu J, Huang K, Barbosa F, Fabre C, Laurat J 2014 J. Vis. Exp. 87 e51224

    [20]

    Laghaout A, Neergaard-Nielsen J S, Rigas I, Kragh C, Tipsmark A, Andersen U L 2013 Phys. Rev. A 87 043826

    [21]

    Laghaout A, Neergaard-Nielsen J S, Rigas I 2013 Conference on Lasers and Electron-Optics Europe and International Quantum Electronics Conference,IEEE 1 1

    [22]

    Kim M S, Lee J, Munro W J 2002 Phys. Rev. A 66 030301

    [23]

    Hyukjoon K, Hyunseok J 2015 Phys. Rev. A 91 012340

    [24]

    Lee C T 1995 Phys. Rev. A 52 3374

  • [1] Zhai Ze-Hui, Hao Wen-Jing, Liu Jian-Li, Duan Xi-Ya. Filter cavity design and length measurement for preparing Schrödinger cat state. Acta Physica Sinica, 2020, 69(18): 184204. doi: 10.7498/aps.69.20200589
    [2] Lin Dun-Qing, Zhu Ze-Qun, Wang Zu-Jian, Xu Xue-Xiang. Quantum statistical properties of phase-type three-headed Schrodinger cat state. Acta Physica Sinica, 2017, 66(10): 104201. doi: 10.7498/aps.66.104201
    [3] Jia Fang, Liu Cun-Jin, Hu Yin-Quan, Fan Hong-Yi. New formula for calculating the fidelity of teleportation and its applications. Acta Physica Sinica, 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [4] Liang Xiu-Dong, Tai Yun-Jiao, Cheng Jian-Min, Zhai Long-Hua, Xu Ye-Jun. Transform relations between squeezed coherent state representation and quantum phase space distribution functions. Acta Physica Sinica, 2015, 64(2): 024207. doi: 10.7498/aps.64.024207
    [5] Yang Guang, Lian Bao-Wang, Nie Min. Fidelity recovery scheme for quantum teleportation in amplitude damping channel. Acta Physica Sinica, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [6] Zhang Hao-Liang, Jia Fang, Xu Xue-Xiang, Guo Qin, Tao Xiang-Yang, Hu Li-Yun. Decoherence of a photon-subtraction-addition coherent state in a thermal environment. Acta Physica Sinica, 2013, 62(1): 014208. doi: 10.7498/aps.62.014208
    [7] Xu Xue-Xiang, Zhang Ying-Kong, Zhang Hao-Liang, Chen Yuan-Yuan. Wigner function of N00N state and quantum interference with N00N state as input. Acta Physica Sinica, 2013, 62(11): 114204. doi: 10.7498/aps.62.114204
    [8] Wen Hong-Yan, Yang Yang, Wei Lian-Fu. Dissipative dynamics of few-photon superposition states in optical microcavity. Acta Physica Sinica, 2012, 61(18): 184206. doi: 10.7498/aps.61.184206
    [9] Song Jun, Fan Hong-Yi, Zhou Jun. Wigner function of two-mode squeezed number state and its properties. Acta Physica Sinica, 2011, 60(11): 110302. doi: 10.7498/aps.60.110302
    [10] Yu Hai-Jun, Du Jian-Ming, Zhang Xiu-Lan. Wigner function of a kind of special single-mode squeezed state. Acta Physica Sinica, 2011, 60(9): 090305. doi: 10.7498/aps.60.090305
    [11] Fang Mao-Fa, Peng Xiao-Fang, Liao Xiang-Ping, Pan Chang-Ning, Fang Jian-Shu. Fidelity of quantum teleportation of atomic-state in dissipative environment. Acta Physica Sinica, 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [12] Lü Jing-Fen, Ma Shan-Jun. Fidelity of the photon subtracted (or added) squeezed vacuum state and squeezed cat state. Acta Physica Sinica, 2011, 60(8): 080301. doi: 10.7498/aps.60.080301
    [13] Song Jun, Fan Hong-Yi. Properties of Wigner function of spin coherent states based on Schwinger Bose operator realization. Acta Physica Sinica, 2010, 59(10): 6806-6813. doi: 10.7498/aps.59.6806
    [14] Lan Hai-Jiang, Pang Hua-Feng, Wei Lian-Fu. Wigner functions of multiple-photon excited coherent states. Acta Physica Sinica, 2009, 58(12): 8281-8288. doi: 10.7498/aps.58.8281
    [15] Xia Yun-Jie, Wang Guang-Hui, Du Shao-Jiang. Fidelity of the scheme of continunous variables quantum teleportation via minimum-correlation mixed quantum states. Acta Physica Sinica, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [16] Zhang Deng-Yu, Guo Ping, Gao Feng. Fidelity of two-level atoms’ quantum states in a strong thermal radiation field. Acta Physica Sinica, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [17] Meng Xiang-Guo, Wang Ji-Suo, Liang Bao-Long. Wigner function for the photon-added even and odd coherent state. Acta Physica Sinica, 2007, 56(4): 2160-2167. doi: 10.7498/aps.56.2160
    [18] Yang Qing-Yi, Sun Jing-Wen, Wei Lian-Fu, Ding Liang-En. Wigner functions for the photon-added and photon-depleted even and odd coherent states. Acta Physica Sinica, 2005, 54(6): 2704-2709. doi: 10.7498/aps.54.2704
    [19] Ji Ying-Hua, Luo Hai-Mei, Ye Zhi-Qing, Wu Yun-Yi, Chen Ming-Yu. Preparation of Schr?dinger cat state via a mesoscopic LC circuit. Acta Physica Sinica, 2004, 53(8): 2534-2538. doi: 10.7498/aps.53.2534
    [20] Dong Chuan-Hua. The squeezing of angular momentum and its evolutions in atomic Schrdinger cat states. Acta Physica Sinica, 2003, 52(2): 337-344. doi: 10.7498/aps.52.337
Metrics
  • Abstract views:  4729
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  02 March 2018
  • Accepted Date:  27 September 2018
  • Published Online:  05 December 2018

/

返回文章
返回