Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of twining on dynamic behaviors of beryllium materials under impact loading and unloading

Pan Hao Wang Sheng-Tao Wu Zi-Hui Hu Xiao-Mian

Citation:

Effect of twining on dynamic behaviors of beryllium materials under impact loading and unloading

Pan Hao, Wang Sheng-Tao, Wu Zi-Hui, Hu Xiao-Mian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As a rare metal material with low density, high strength and high melting point, beryllium (Be) is widely utilized in many fields including aerospace and vehicles. Dynamic loadings such as impact and high-rate compression often happen in the applications of Be materials in these fields. However, the dynamic behaviors of Be materials under high pressure and high-rate loading have not been fully investigated, although they are valuable for better applications of Be materials. articularly, the effect of twinning on dynamic behaviors of Be material is very important for better understanding the plasticity deformation mechanism of Be material. In this paper, a thermoelastic-viscoplastic crystal plasticity model is developed for dynamic behaviors of Be material under high pressure and high strain-rate loading based on the physical mechanism of plasticity deformation. Besides, the dislocation motion and work hardening are considered within the constitutive framework by the Orowan relation and the Taylor equation respectively, and the contribution of twinning to the plasticity deformation is also considered via twinning fraction evolution and fragmentation of crystal due to twinning deformation. With the model, dynamic behaviors of Be material are investigated, including effect of pressure on the dynamic yield strength, the quasi-elastic unloading behavior, and evolution of twinning in shock loading and unloading. Compared with the classical SG model, the model developed in this paper accords better with the experimental results in predicting yield strength of Be material under impact loading, especially with high pressure. Moreover, it is revealed that the condition of yield strength of the Be material is divided into three cases, namely the non-twinning under low pressure, the twinning deformation under moderate pressure, and the twinning fragmentation under high pressure. The unloading behavior of Be material under impact loading is also studied with the model, and the quasi-elastic unloading behavior observed in experiments many times, is faithfully predicted. It is found that the quasi-elastic unloading phenomenon of the material is closely related to the variation of the shear velocity of shock wave with the shear strain, which suggests that the non-linear elastic property of the material is an important reason for this phenomenon. Finally, the evolution of twinning of Be material in the shock loading is studied, showing that the increasing of twinning friction happens not only in the loading process but also in the unloading process of the shock waves. Some crystals break up into sub-crystals due to the fact that the volume fraction of twinning exceeds the critical fraction in the evolution of twinning.
      Corresponding author: Hu Xiao-Mian, Hu_xiaomian@iapcm.ac.cn
    • Funds: Project supported by Science Challenge Project, China (Grant No. TZ2018001) and the National Natural Science Foundation of China (Grant No. 11702031).
    [1]

    Zhang Y S, Qin Y J, Wu D Z, Xie Z Q 2001 Trans. China Welding Inst. 22 92 (in Chinese) [张友寿, 秦有钧, 吴东周, 谢志强 2001 焊接学报 22 92]

    [2]

    Johnson W, Rice S L 1972 Impact Strength of Materials (London: Edward Arnold)

    [3]

    Meyers M A 1994 Dynamic Behavior of Materials (New York: John wiley & Sons)

    [4]

    Brown D W, Clausen B, Sisneros T A, Balogh I, Beyerlein I J 2013 Metall. Mater. Trans. A 44 5665

    [5]

    Champman C L, Wise J L, Asay J R 1982 AIP Conference Proceedings 78 422

    [6]

    Steinberg D, Breithaupt D, Honodel C 1986 Physica B+C 139 762

    [7]

    Brown J L, Knudson M D, Alexander C S, Asay J R 2014 J. Appl. Phys. 116 033502

    [8]

    Frahan M T H, Belof J L, Cavallo R M, Raevsky V A, Ignatova O N, Lebedev A, Ancheta D S, El-dasher B S, Florando J N, Gallegos G F, Johnsen E, LeBlanc M M 2015 J. Appl. Phys. 117 225901

    [9]

    van Houtte P 1978 Acta Metar. 26 591

    [10]

    Tomé C N, Lebensohn R A, Kocks U F 1991 Acta Mater. 39 2667

    [11]

    Lebensohn R A, Tomé C N 1993 Acta Mater. 41 2611

    [12]

    Kalidindi S R, Bronkhorst C A, Anand L 1992 J. Mech. Phys. Solids 40 537

    [13]

    Winey J M, Gupta Y M 2014 J. Appl. Phys. 116 033505

    [14]

    Pan H 2017 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [潘昊 2017 博士学位论文 (绵阳:中国工程物理研究院)]

    [15]

    Salem A A, Kalidindi S R, Doherty R D 2002 Scripta Mater. 46 419

    [16]

    Wang J, Beyerlein I J, Tomé C N 2010 Scripta Mater. 63 741

    [17]

    Wu X, Kalidindi S R, Necker C, Salem A A 2007 Acta Mater. 55 423

    [18]

    Salem A A, Kalidindi S R, Doherty R D 2003 Acta Mater. 51 4225

    [19]

    Brown D W, Beyerlein I J, Sisneros T A, Clausen B, Tomé C N 2012 Int. J. Plast. 29 120

    [20]

    Knezevic M, Beyerlein I J, Brown D W, Sisneros T A, Tomé C N 2013 Int. J. Plast. 49 185

    [21]

    Kalidindi S R 1998 J. Mech. Phys. Solids 46 267273

    [22]

    Johnson J N, Rohde R W 1971 J. Appl. Phys. 42 4171

    [23]

    Wang H, Wu P D, Wang J, Tomé C N 2013 Int. J. Plast. 49 36

    [24]

    Proust G, Tomé C N, Jain A, Agnew S R 2009 Int. J. Plast. 25 861

    [25]

    Borodin E N, Mayer A E 2015 Int. J. Plast. 74 141

    [26]

    Chhabildas L C, Wise J L, Asay J R 1982 AIP Confer. Proceed. 78 422

    [27]

    Igonin V V 2014 Report on Task 3 Agreement# B590737 LLNL Livermore, CA

    [28]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

  • [1]

    Zhang Y S, Qin Y J, Wu D Z, Xie Z Q 2001 Trans. China Welding Inst. 22 92 (in Chinese) [张友寿, 秦有钧, 吴东周, 谢志强 2001 焊接学报 22 92]

    [2]

    Johnson W, Rice S L 1972 Impact Strength of Materials (London: Edward Arnold)

    [3]

    Meyers M A 1994 Dynamic Behavior of Materials (New York: John wiley & Sons)

    [4]

    Brown D W, Clausen B, Sisneros T A, Balogh I, Beyerlein I J 2013 Metall. Mater. Trans. A 44 5665

    [5]

    Champman C L, Wise J L, Asay J R 1982 AIP Conference Proceedings 78 422

    [6]

    Steinberg D, Breithaupt D, Honodel C 1986 Physica B+C 139 762

    [7]

    Brown J L, Knudson M D, Alexander C S, Asay J R 2014 J. Appl. Phys. 116 033502

    [8]

    Frahan M T H, Belof J L, Cavallo R M, Raevsky V A, Ignatova O N, Lebedev A, Ancheta D S, El-dasher B S, Florando J N, Gallegos G F, Johnsen E, LeBlanc M M 2015 J. Appl. Phys. 117 225901

    [9]

    van Houtte P 1978 Acta Metar. 26 591

    [10]

    Tomé C N, Lebensohn R A, Kocks U F 1991 Acta Mater. 39 2667

    [11]

    Lebensohn R A, Tomé C N 1993 Acta Mater. 41 2611

    [12]

    Kalidindi S R, Bronkhorst C A, Anand L 1992 J. Mech. Phys. Solids 40 537

    [13]

    Winey J M, Gupta Y M 2014 J. Appl. Phys. 116 033505

    [14]

    Pan H 2017 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [潘昊 2017 博士学位论文 (绵阳:中国工程物理研究院)]

    [15]

    Salem A A, Kalidindi S R, Doherty R D 2002 Scripta Mater. 46 419

    [16]

    Wang J, Beyerlein I J, Tomé C N 2010 Scripta Mater. 63 741

    [17]

    Wu X, Kalidindi S R, Necker C, Salem A A 2007 Acta Mater. 55 423

    [18]

    Salem A A, Kalidindi S R, Doherty R D 2003 Acta Mater. 51 4225

    [19]

    Brown D W, Beyerlein I J, Sisneros T A, Clausen B, Tomé C N 2012 Int. J. Plast. 29 120

    [20]

    Knezevic M, Beyerlein I J, Brown D W, Sisneros T A, Tomé C N 2013 Int. J. Plast. 49 185

    [21]

    Kalidindi S R 1998 J. Mech. Phys. Solids 46 267273

    [22]

    Johnson J N, Rohde R W 1971 J. Appl. Phys. 42 4171

    [23]

    Wang H, Wu P D, Wang J, Tomé C N 2013 Int. J. Plast. 49 36

    [24]

    Proust G, Tomé C N, Jain A, Agnew S R 2009 Int. J. Plast. 25 861

    [25]

    Borodin E N, Mayer A E 2015 Int. J. Plast. 74 141

    [26]

    Chhabildas L C, Wise J L, Asay J R 1982 AIP Confer. Proceed. 78 422

    [27]

    Igonin V V 2014 Report on Task 3 Agreement# B590737 LLNL Livermore, CA

    [28]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

  • [1] Hua Ying-Xin, Liu Fu-Sheng, Geng Hua-Yun, Hao Long, Yu Ji-Dong, Tan Ye, Li Jun. Kinetics of iron α-εphase transition under thermodynamic path of multiple shock loading-unloading. Acta Physica Sinica, 2021, 70(16): 166201. doi: 10.7498/aps.70.20210089
    [2] Xu Bo, Tian Yong-Jun. High pressure synthesis of nanotwinned ultrahard materials. Acta Physica Sinica, 2017, 66(3): 036201. doi: 10.7498/aps.66.036201
    [3] Pan Hao, Wu Zi-Hui, Hu Xiao-Mian. Characteristic method to infer the high-pressure sound speed in a nonsymmetric impact and release experiment. Acta Physica Sinica, 2016, 65(11): 116201. doi: 10.7498/aps.65.116201
    [4] Jiang Tai-Long, Yu Yin, Huan Qiang, Li Yong-Qiang, He Hong-Liang. Shock plasticity design of brittle material. Acta Physica Sinica, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [5] Yu Yu-Ying, Tan Ye, Dai Cheng-Da, Li Xue-Mei, Li Ying-Hua, Tan Hua. Sound velocities of vanadium under shock compression. Acta Physica Sinica, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [6] Wang Wen-Peng, Liu Fu-Sheng, Zhang Ning-Chao. Structural transformation of liquid water under shock compression condition. Acta Physica Sinica, 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [7] Yu Yu-Ying, Xi Feng, Dai Cheng-Da, Cai Ling-Cang, Tan Hua, Li Xue-Mei, Hu Chang-Ming. Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading. Acta Physica Sinica, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [8] Guan Qing-Feng, Gu Qian-Qian, Li Yan, Qiu Dong-Hua, Peng Dong-Jin, Wang Xue-Tao. Microstructures in polycrystalline pure copper induced by high-current pulsed electron beamdeformation structures. Acta Physica Sinica, 2011, 60(8): 086106. doi: 10.7498/aps.60.086106
    [9] He An-Min, Shao Jian-Li, Wang Pei, Qin Cheng-Sen. Plastic deformation of single-crystalline copper films with surface orientation [001] : molecular dynamics simulations. Acta Physica Sinica, 2010, 59(12): 8836-8842. doi: 10.7498/aps.59.8836
    [10] He An-Min, Shao Jian-Li, Qin Cheng-Sen, Wang Pei. Molecular dynamics study on the plastic behavior of monocrystalline copper under shock loading and unloading. Acta Physica Sinica, 2009, 58(8): 5667-5672. doi: 10.7498/aps.58.5667
    [11] Wang Hai-Yan, Zhu Wen-Jun, Deng Xiao-Liang, Song Zhen-Fei, Chen Xiang-Rong. Plastic deformation of helium bubble and void in aluminum under shock loading. Acta Physica Sinica, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [12] Deng Xiao-Liang, Zhu Wen-Jun, Song Zhen-Fei, He Hong-Liang, Jing Fu-Qian. Microscopic mechanism of void coalescence under shock loading. Acta Physica Sinica, 2009, 58(7): 4772-4778. doi: 10.7498/aps.58.4772
    [13] Chen Jun, Xu Yun, Chen Dong-Quan, Sun Jin-Shan. Multi-scale simulation of the dynamic behaviors of nano-void in shocked material. Acta Physica Sinica, 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [14] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [15] Zhu Hong-Xi, Mao Wei-Min, Feng Hui-Ping, Lü Fan-Xiu, Vlasov I. I., Ralchenko V. G., Khomich A. V.. Atomic mechanism of twin formation in CVD diamond films. Acta Physica Sinica, 2007, 56(7): 4049-4055. doi: 10.7498/aps.56.4049
    [16] Deng Xiao-Liang, Zhu Wen-Jun, He Hong-Liang, Wu Deng-Xue, Jing Fu-Qian. Initial dynamic behavior of nano-void growth in single-crystal copper under shock loading along 〈111〉 direction. Acta Physica Sinica, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [17] GUO KE-XIN, WU YU-KUN, LIANG JIN-ZHONG, CHANG XIN. THE HEXAGONAL METASTABLE PHASE FORMED IN AN AMORPHOUS Ni-P ALLOY DURING CRYSTALLIZATION (II)——TWIN GROWTH RELATIONSHIP. Acta Physica Sinica, 1983, 32(7): 939-946. doi: 10.7498/aps.32.939
    [18] YU ZHEN-ZHONG, JIN GANG, CHEN XIN-QIANG, MA KE-JUN. ON THE FACETS AND TWIN FORMATION IN THE GROWTH OF InSb SINGLE CRYSTALS. Acta Physica Sinica, 1980, 29(1): 11-18. doi: 10.7498/aps.29.11
    [19] ZOU BEN-SAN, YE HENG-QIANG, WU YU-KUN, GUO KE-XIN. ON REDUCTION OF THE HIGH ORDER TWINNING IN FCC STRUCTURE TO A SINGLE ROTATION RELATIONSHIP. Acta Physica Sinica, 1979, 28(3): 297-304. doi: 10.7498/aps.28.297
    [20] GUO KE-XIN. ELECTRON DIFFRACTION ANALYSIS OF THE TWIN AND HCP PHASE FORMED IN A FCC CRYSTAL. Acta Physica Sinica, 1978, 27(5): 547-553. doi: 10.7498/aps.27.547
Metrics
  • Abstract views:  5044
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  15 March 2018
  • Accepted Date:  22 May 2018
  • Published Online:  20 August 2019

/

返回文章
返回