Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Poly-L-lysine induced shape change of negatively charged giant vesicles

Sheng Jie Wang Kai-Yu Ma Bei-Bei Zhu Tao Jiang Zhong-Ying

Citation:

Poly-L-lysine induced shape change of negatively charged giant vesicles

Sheng Jie, Wang Kai-Yu, Ma Bei-Bei, Zhu Tao, Jiang Zhong-Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Decoration of biomembrane with polymer may improve its physical properties, biocompatibility, and stability. In this study, we employ the inverted fluorescence microscopy to characterize the polylysine (PLL) induced shape transformation of the negatively charged giant unilamellar vesicles (GUVs) in low ionic medium. It is found that PLL may be adsorbed to the 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1, 2-dioleoyl-sn-glycero-3-phosphatidic acid (DOPA) binary mixture vesicles, resulting in the attachment between the membranes, the formation of the ropes, and rupture of the GUVs. The response of GUVs generally is enhanced with the increase of the negatively charged DOPA in the membranes. The experimental observations are concluded as follows. Firstly, for the PLL induced attachment of GUVs, the attachment area grows gradually with time. Secondly, ropes can only be found in relatively large GUVs. However, the hollow structure is not discernable from the fluorescence imaging. Thirdly, after the rupture of GUVs, some phase-separated-like highly fluorescence lipid domains form in the adjacent intact vesicles. Through careful discussion and analysis, we show that on the one hand, the positively charged PLL adheres to the negatively charged membrane surface, bridging the neighboring GUVs and drawing the originally electrical repulsive vesicles together. The contact zone between GUVs expands with the increasing adsorption of PLL in this area. And the local high fluorescence areas in the GUVs originate from the PLL induced membrane attachment as well. Some membrane segments from ruptured vesicles are adsorbed to the particular areas of GUV, forming a few lipid patch structures above the latter membrane. On the other hand, PLL is adsorbed to the membrane area enriched in the negatively charged DOPA, reversing the surface charge of the upper leaflet and deteriorating the stability of the lipid bilayer. The original equilibrium of the system is broken by the change of the electrical interaction between the neighboring lipid domains as well as the interaction between the domain and water-dispersed PLL. The lipid packing density and inter-lipid force are affected by the PLL adsorption. Lipid membranes have to bud to release the stress built in the spontaneous curvature incompatibility in the two leaflets. The system may become stable again after buds grown into rods with a certain length. All in all, this study deepens the understanding of the interaction mechanism between lipid membrane and oppositely charged polymer. The conclusions obtained will provide valuable reference for the further studies on the polymer-GUV application areas including drug delivery, control release, cell deformation, micro-volume reaction, and gene therapy.
      Corresponding author: Zhu Tao, zhuttd@163.com;jiangzhying@163.com ; Jiang Zhong-Ying, zhuttd@163.com;jiangzhying@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11464047, 21764015, 11474155, 11774147), the Fundamental Research Funds for the Central Universities, China, the Youth Science and Technology Innovation Talents Training Project of the Autonomous Region, China (Grant No. QN2016YX0504), and the Scientific Research Project of Yili Normal University, China (Grant No. 2013YSYB19).
    [1]

    Yang K, Ma Y Q 2010 Nat. Nanotech. 5 579

    [2]

    Ding H M, Tian W D, Ma Y Q 2012 ACS Nano 6 1230

    [3]

    Tahara K, Tadokoro S, Kawashima Y, Hirashima N 2012 Langmuir 28 7114

    [4]

    Jiang Z Y, Zhang G L, Ma J, Zhu T 2013 Acta Phys. Sin. 62 018701 (in Chinese) [蒋中英, 张国梁, 马晶, 朱涛 2013 物理学报 62 018701]

    [5]

    Ge L, Mhwald H, Li J 2003 Colloid. Surf. A 221 49

    [6]

    Brown K L, Conboy J C 2011 J. Am. Chem. Soc. 133 8794

    [7]

    Zhu T, Jiang Z Y, Ma Y Q, Hu Y 2016 ACS Appl. Mater. Interfaces 8 5857

    [8]

    Lee I C, Wu Y C 2014 ACS Appl. Mater. Interfaces 6 14439

    [9]

    Ding L, Chi E Y, Chemburu S 2009 Langmuir 25 13742

    [10]

    Burke S E, Barrett C J 2003 Biomacromolecules 4 1773

    [11]

    Tabaei S R, Jonsson P, Branden M, Hook F 2009 J. Struct. Biol. 168 200

    [12]

    Luan Y, Ramos L 2007 J. Am. Chem. Soc. 129 14619

    [13]

    Fu M, Li Q, Sun B 2017 ACS Nano 11 7349

    [14]

    Li Z L, Ding H M, Ma Y Q 2016 J. Phys.: Condens. Matter 28 083001

    [15]

    Hu J M, Tian W D, Ma Y Q 2015 Macromol. Theory Simul. 24 399

    [16]

    Menger F M, Seredyuk V A, Kitaeva M V, Yaroslavov A A, Melik-Nubarov N S 2003 J. Am. Chem. Soc. 125 2846

    [17]

    Kim Y W, Sung W Y 2001 Phys. Rev. E 63 041910

    [18]

    Lee H, Larson G R 2008 J. Phys. Chem. B 112 12279

    [19]

    Le B M, Yamada A, Reck L, Chen Y, Baigl D 2008 Langmuir 24 2643

    [20]

    Bi H, Yang B, Wang L 2013 J. Mater. Chem. A 1 7125

    [21]

    Pantazatos D P, MacDonald R C 1999 J. Membrane Biol. 170 27

    [22]

    Fan J, Li J F, Zhang H D, Yang Y L 2007 Acta Phys. Sin. 56 7230 (in Chinese) [范瑾, 李剑锋, 张红东, 杨玉良 2007 物理学报 56 7230]

    [23]

    Duan H, Li J F, Zhang H D 2018 Acta Phys. Sin. 67 038701 (in Chinese) [段华, 李剑锋, 张红东 2018 物理学报 67 038701]

    [24]

    Laroche G, Carrier D, Pzolet M 1988 Biochemistry 27 6220

    [25]

    Xie L Q, Tian W D, Ma Y Q 2013 Soft Matter 9 9319

    [26]

    Hayward S L, Francis D M, Sis M J, Kidambi S 2015 Sci. Rep. 5 14683

    [27]

    Heath G R, Li M, Polignano I L, Richens J L, Catucci G, Butt J N 2016 Biomacromolecules 17 324

    [28]

    Tian W D, Ma Y Q 2013 Chem. Soc. Rev. 42 705

    [29]

    Li J, Zhang H, Qiu F, Yang Y, Chen J Z 2015 Soft Matter 11 1788

    [30]

    Khalifat N, Puff N, Bonneau S, Fournier J B, Angelova M I 2008 Biophys. J. 95 4924

  • [1]

    Yang K, Ma Y Q 2010 Nat. Nanotech. 5 579

    [2]

    Ding H M, Tian W D, Ma Y Q 2012 ACS Nano 6 1230

    [3]

    Tahara K, Tadokoro S, Kawashima Y, Hirashima N 2012 Langmuir 28 7114

    [4]

    Jiang Z Y, Zhang G L, Ma J, Zhu T 2013 Acta Phys. Sin. 62 018701 (in Chinese) [蒋中英, 张国梁, 马晶, 朱涛 2013 物理学报 62 018701]

    [5]

    Ge L, Mhwald H, Li J 2003 Colloid. Surf. A 221 49

    [6]

    Brown K L, Conboy J C 2011 J. Am. Chem. Soc. 133 8794

    [7]

    Zhu T, Jiang Z Y, Ma Y Q, Hu Y 2016 ACS Appl. Mater. Interfaces 8 5857

    [8]

    Lee I C, Wu Y C 2014 ACS Appl. Mater. Interfaces 6 14439

    [9]

    Ding L, Chi E Y, Chemburu S 2009 Langmuir 25 13742

    [10]

    Burke S E, Barrett C J 2003 Biomacromolecules 4 1773

    [11]

    Tabaei S R, Jonsson P, Branden M, Hook F 2009 J. Struct. Biol. 168 200

    [12]

    Luan Y, Ramos L 2007 J. Am. Chem. Soc. 129 14619

    [13]

    Fu M, Li Q, Sun B 2017 ACS Nano 11 7349

    [14]

    Li Z L, Ding H M, Ma Y Q 2016 J. Phys.: Condens. Matter 28 083001

    [15]

    Hu J M, Tian W D, Ma Y Q 2015 Macromol. Theory Simul. 24 399

    [16]

    Menger F M, Seredyuk V A, Kitaeva M V, Yaroslavov A A, Melik-Nubarov N S 2003 J. Am. Chem. Soc. 125 2846

    [17]

    Kim Y W, Sung W Y 2001 Phys. Rev. E 63 041910

    [18]

    Lee H, Larson G R 2008 J. Phys. Chem. B 112 12279

    [19]

    Le B M, Yamada A, Reck L, Chen Y, Baigl D 2008 Langmuir 24 2643

    [20]

    Bi H, Yang B, Wang L 2013 J. Mater. Chem. A 1 7125

    [21]

    Pantazatos D P, MacDonald R C 1999 J. Membrane Biol. 170 27

    [22]

    Fan J, Li J F, Zhang H D, Yang Y L 2007 Acta Phys. Sin. 56 7230 (in Chinese) [范瑾, 李剑锋, 张红东, 杨玉良 2007 物理学报 56 7230]

    [23]

    Duan H, Li J F, Zhang H D 2018 Acta Phys. Sin. 67 038701 (in Chinese) [段华, 李剑锋, 张红东 2018 物理学报 67 038701]

    [24]

    Laroche G, Carrier D, Pzolet M 1988 Biochemistry 27 6220

    [25]

    Xie L Q, Tian W D, Ma Y Q 2013 Soft Matter 9 9319

    [26]

    Hayward S L, Francis D M, Sis M J, Kidambi S 2015 Sci. Rep. 5 14683

    [27]

    Heath G R, Li M, Polignano I L, Richens J L, Catucci G, Butt J N 2016 Biomacromolecules 17 324

    [28]

    Tian W D, Ma Y Q 2013 Chem. Soc. Rev. 42 705

    [29]

    Li J, Zhang H, Qiu F, Yang Y, Chen J Z 2015 Soft Matter 11 1788

    [30]

    Khalifat N, Puff N, Bonneau S, Fournier J B, Angelova M I 2008 Biophys. J. 95 4924

  • [1] Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie. Generation of collisionless electrostatic shock waves in interaction between strong intense laser and near-critical-density plasma. Acta Physica Sinica, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [2] Wang Kang, Xu Cheng, Wu Jin-Feng, Yang Kai, Yuan Bing. Single-molecule study of interaction between melittin and one-component lipid membrane. Acta Physica Sinica, 2021, 70(17): 178701. doi: 10.7498/aps.70.20210477
    [3] Lu Jian-Xin, Zhang Nan. D-brane interaction, the open string pair production and its enhancement plus its possible detection. Acta Physica Sinica, 2020, 69(10): 101101. doi: 10.7498/aps.69.20200037
    [4] Xu Cheng, Lin Zhao, Yang Kai, Yuan Bing. Single molecular kinetics during the interactions between melittin and a bi-component lipid membrane. Acta Physica Sinica, 2020, 69(10): 108701. doi: 10.7498/aps.69.20200166
    [5] Liang Yi-Ran, Liang Qing. Molecular simulation of interaction between charged nanoparticles and phase-separated biomembranes containning charged lipids. Acta Physica Sinica, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [6] Ma Li, He Xiao-Long, Li Ming, Hu Shu-Xin. Fluorescent investigation on process of tBid inducing membrane permeabilization. Acta Physica Sinica, 2018, 67(14): 148703. doi: 10.7498/aps.67.20180099
    [7] Duan Hua, Li Jian-Feng, Zhang Hong-Dong. Theoretical simulations of deformation coupling with phase separation of two-component charged vesicles in a two-dimensional plane. Acta Physica Sinica, 2018, 67(3): 038701. doi: 10.7498/aps.67.20171740
    [8] Qin Shi-Rong, Zhao Qi, Cheng Zhen-Guo, Su Li-Xia, Shan Chong-Xin. Disintegration, functionalization and drug-delivery application of nanodiamond. Acta Physica Sinica, 2018, 67(16): 166801. doi: 10.7498/aps.67.20180862
    [9] Liang Yue-Feng, Zhang Shao-Guang. Shape transformations of opening-up vesicles with one hole. Acta Physica Sinica, 2017, 66(15): 158701. doi: 10.7498/aps.66.158701
    [10] Niu Yu-Quan, Zheng Bin, Cui Chun-Hong, Wei Wei, Zhang Cai-Xia, Meng Qing-Tian. The adhesion of two cylindrical colloids to a tubular membrane. Acta Physica Sinica, 2014, 63(3): 038701. doi: 10.7498/aps.63.038701
    [11] Zhang Zhao-Hui, Li Hai-Peng, Mao Shi-Chun. Effect of the structure and the arrangement of organic molecules on the atomic charge and electrostatic interaction. Acta Physica Sinica, 2014, 63(19): 198701. doi: 10.7498/aps.63.198701
    [12] Zhang Peng-Li, Lin Shu-Yu. Two-bubble interaction under the sound field. Acta Physica Sinica, 2009, 58(11): 7797-7801. doi: 10.7498/aps.58.7797
    [13] Zhan Xiao-Yuan, Zhang Yue, Qi Jun-Jie, Gu You-Song, Zheng Xiao-Lan. The magnetic interactions in FePt nanocomposite film. Acta Physica Sinica, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [14] Li Jian-Feng, Zhang Hong-Dong, Qiu Feng, Yang Yu-Liang. A new approach to study the dynamics of the deformation of vesicles discrete-space variational method. Acta Physica Sinica, 2005, 54(9): 4000-4005. doi: 10.7498/aps.54.4000
    [15] CHEN GANG-JIN, XIA ZHONG-FU, ZHANG YE-WEN. THE INTERACTION CHARACTERISTICS BETWEEN SPACE CHARGE AND DIPOLE IN THE HOST-GUEST NLO POLYMER ELECTRET DR1/PMMA FILMS. Acta Physica Sinica, 1999, 48(6): 1066-1071. doi: 10.7498/aps.48.1066
    [16] YAN JIA-REN, MEI YU-PING. INTERACTION BETWEEN SOLITONS IN OPTICAL FIBERS. Acta Physica Sinica, 1996, 45(7): 1122-1129. doi: 10.7498/aps.45.1122
    [17] DAI CHANG-JIAN. INTERACTIONS OF AUTOIONIZING SERIES. Acta Physica Sinica, 1994, 43(3): 369-379. doi: 10.7498/aps.43.369
    [18] ZHANG JING, SUN RUN-GUANG. A STUDY OF THE PHYSICOCHEMICAL CHARACTER OF THE INTERACTION OF THE LIPOSOME CONTAINING OLEIC ACID OF THE LIQUID-CRYSTAL STATE AND BIOMEMBRANE. Acta Physica Sinica, 1994, 43(9): 1495-1501. doi: 10.7498/aps.43.1495
    [19] QIAN ZU-WEN. SOUND INTERACTION AMONG SPHERICAL PARTICLES. Acta Physica Sinica, 1981, 30(4): 433-441. doi: 10.7498/aps.30.433
    [20] СИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ СТРАННЫХ ЧАСТИЦ. Acta Physica Sinica, 1962, 18(7): 334-378. doi: 10.7498/aps.18.334
Metrics
  • Abstract views:  5259
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2018
  • Accepted Date:  15 April 2018
  • Published Online:  05 August 2018

/

返回文章
返回