Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Expansion characteristics of atom and ion component in laser-induced aluminum plasma

Lin Zhi-Yi Jian Jun-Tao Wang Xiao-Hua Hang Wei

Citation:

Expansion characteristics of atom and ion component in laser-induced aluminum plasma

Lin Zhi-Yi, Jian Jun-Tao, Wang Xiao-Hua, Hang Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A series of experiments is designed in order to investigate the expansion and movement characteristics of atoms and ions of the plasma in the presence of ambient gas. To obtain two-dimensional spectral images of different components in the plasma, a nanosecond laser with a wavelength of 532 nm is used to ablate an aluminum sample, forming the plasma. A C-T type of tri-grating monochromator with an emICCD detector is used for diagnosing the plasma chronologically. At the same time, a 2400 gmm-1 grating is used to replace the narrowband filter for imaging diagnosis of different components in vacuum. The spectrally resolved images of Al I (396.1 nm), Al Ⅱ (466.3 nm), and Al Ⅲ (447.9 nm) in aluminum plasma are obtained. Besides, the spectral images of plasma components under different ambient pressures are collected to explore the influence of background gas on plasma evolution. The results show that in the plasma formation process, the ion component is distributed in the anterior segment of the plume relative to the atom component, and its angular distribution is smaller. The vacuum expansion rates of atoms and ions are all on the order of 104 ms-1. The movement speed of the ion component in the plasma is higher than that of atom component, and its movement speed increases with the valence of the ion increasing. In the energy density range used in this experiment, the velocity varies slightly with the laser energy. For the neutral atom, the velocity increases obviously as the energy increases. With the expansion process progressing, each component of the plume advances along the direction normal to the sample surface, and the emission intensity gradually decreases, the corresponding plume density and its temperature also decrease. With the ambient pressure increasing, the movement characteristics of each component are obviously different from those under high vacuum. At a pressure higher than 1 Pa, the plasma and the ambient gas are infiltrated with each other, vignetting appears in the front of the plume, disturbance occurs, causing the expansion speed to decrease. In addition, the plasma plume shrinks due to the increase of pressure, and the probability of collision with the background gas increases, so that the plume emission intensity is strengthened and the plasma lifetime is prolonged. The results of the new diagnosis method and the experimental results demonstrated in this study can provide a reference for the study of plasma component dynamic process.
      Corresponding author: Hang Wei, weihang@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21427813).
    [1]

    Emara E M, Imam H, Hassan M A, Elnaby S H 2013 Talanta 117 176

    [2]

    Pedarnig J D, Kolmhofer P, Huber N, Praher B, Heitz J, Rssler R 2013 Appl. Phys. A: Mater. 112 105

    [3]

    Srungaram P K, Ayyalasomayajula K K, Fang Y Y, Singh J P 2013 Spectrochim. Acta B 87 108

    [4]

    Wu J, Wei W, Yang Z, Li X 2014 IEEE Trans. Plasma Sci. 42 2586

    [5]

    Harilal S, Bindhu C, Tillack M, Najmabadi F, Gaeris A 2003 J. Appl. Phys. 93 2380

    [6]

    Sankar P, Nivas J J J, Smijesh N, Tiwari G K, Philip R 2017 J. Anal. Atom. Spectrom. 32 1177

    [7]

    Hahn D W, Omenetto N 2010 Appl. Spectrosc. 64 335

    [8]

    Ma, Q L, Motto-Ros V, Lei W Q, Boueri M, Bai X S, Zheng L J, Zeng H P, Yu J 2010 Spectrochim. Acta B 65 896

    [9]

    Bogaerts A, Chen Z, Bleiner D 2006 J. Anal. Atom. Spectrom. 21 384

    [10]

    Bogaerts A, Chen Z 2004 J. Anal. Atom. Spectrom. 19 1169

    [11]

    Chen Z, Bleiner D, Bogaerts A 2006 J. Appl. Phys. 99 063304

    [12]

    Zheng P C, Liu H D, Wang J M, Yu B, Yang R, Zhang B, Wang X M 2014 Chin. J. Laser 41 1015001 (in Chinese) [郑培超, 刘红弟, 王金梅, 于斌, 杨蕊, 张斌, 王晓蒙 2014 中国激光 41 1015001]

    [13]

    Wang X L, Zhang N, Zhao Y B, Li Z L, Zhai H C, Zhu X N 2008 Acta Phys. Sin. 57 354 (in Chinese) [王晓雷, 张楠, 赵友博, 李智磊, 翟宏琛, 朱晓农 2008 物理学报 57 354]

    [14]

    Freeman J R, Harilal S S, Diwakar P K, Verhoff B, Hassanein A 2013 Spectrochim. Acta B 87 43

    [15]

    Li X Y, Lin Z X, Liu Y Y, Chen Y Q, Gong S S 2004 Acta Opt. Sin. 24 1051 (in Chinese) [李小银, 林兆祥, 刘煜炎, 陈扬锓, 龚顺生 2004 光学学报 24 1051]

    [16]

    Guo K M, Gao X, Hao Z Q, Lu Y, Sun C K, Lin J Q 2012 Acta Phys. Sin. 61 075212 (in Chinese) [郭凯敏, 高勋, 郝作强, 鲁毅, 孙长凯, 林景全 2012 物理学报 61 075212]

    [17]

    Miyabe M, Oba M, Limura H, Akaoka K, Khumarni A, Kato M, Wakaida I 2015 Spectrochim. Acta B 110 101

    [18]

    Bai X S, Ma Q L, Perrier M, Motto-Ros V, Sabourdy D, Nguyen L, Jalocha A, Yu J 2013 Spectrochim. Acta B 87 27

    [19]

    NIST Atomic Spectra Database Lines Form https://physics.nist.gov/PhysRefData/ASD/lines_form.html [2018-4-2]

    [20]

    Bulgakova N M, Bulgakov A V, Bobrenok O F 2000 Phys. Rev. E 62 5624

    [21]

    Wang X, Zhang S, Cheng X, Zhu E, Hang W, Huang B 2014 Spectrochim. Acta B 99 101

    [22]

    Torrisi L, Caridi F, Margarone D, Borrielli A 2008 Appl. Surf. Sci. 254 2090

    [23]

    Tang X S, Li C Y, Zhu G L, Ji X H, Feng E Y, Zhang W J, Cui Z F 2004 Chin. J. Laser 31 687 (in Chinese) [唐晓闩, 李春燕, 朱光来, 季学韩, 凤尔银, 张为俊, 崔执凤 2004 中国激光 31 687]

    [24]

    Chen X, Bian B M, Shen Z H, Lu J, Ni X W 2003 Micro. Opt. Techn. Lett. 38 75

    [25]

    Sharma A K, Thareja R K 2005 Appl. Surf. Sci. 243 68

  • [1]

    Emara E M, Imam H, Hassan M A, Elnaby S H 2013 Talanta 117 176

    [2]

    Pedarnig J D, Kolmhofer P, Huber N, Praher B, Heitz J, Rssler R 2013 Appl. Phys. A: Mater. 112 105

    [3]

    Srungaram P K, Ayyalasomayajula K K, Fang Y Y, Singh J P 2013 Spectrochim. Acta B 87 108

    [4]

    Wu J, Wei W, Yang Z, Li X 2014 IEEE Trans. Plasma Sci. 42 2586

    [5]

    Harilal S, Bindhu C, Tillack M, Najmabadi F, Gaeris A 2003 J. Appl. Phys. 93 2380

    [6]

    Sankar P, Nivas J J J, Smijesh N, Tiwari G K, Philip R 2017 J. Anal. Atom. Spectrom. 32 1177

    [7]

    Hahn D W, Omenetto N 2010 Appl. Spectrosc. 64 335

    [8]

    Ma, Q L, Motto-Ros V, Lei W Q, Boueri M, Bai X S, Zheng L J, Zeng H P, Yu J 2010 Spectrochim. Acta B 65 896

    [9]

    Bogaerts A, Chen Z, Bleiner D 2006 J. Anal. Atom. Spectrom. 21 384

    [10]

    Bogaerts A, Chen Z 2004 J. Anal. Atom. Spectrom. 19 1169

    [11]

    Chen Z, Bleiner D, Bogaerts A 2006 J. Appl. Phys. 99 063304

    [12]

    Zheng P C, Liu H D, Wang J M, Yu B, Yang R, Zhang B, Wang X M 2014 Chin. J. Laser 41 1015001 (in Chinese) [郑培超, 刘红弟, 王金梅, 于斌, 杨蕊, 张斌, 王晓蒙 2014 中国激光 41 1015001]

    [13]

    Wang X L, Zhang N, Zhao Y B, Li Z L, Zhai H C, Zhu X N 2008 Acta Phys. Sin. 57 354 (in Chinese) [王晓雷, 张楠, 赵友博, 李智磊, 翟宏琛, 朱晓农 2008 物理学报 57 354]

    [14]

    Freeman J R, Harilal S S, Diwakar P K, Verhoff B, Hassanein A 2013 Spectrochim. Acta B 87 43

    [15]

    Li X Y, Lin Z X, Liu Y Y, Chen Y Q, Gong S S 2004 Acta Opt. Sin. 24 1051 (in Chinese) [李小银, 林兆祥, 刘煜炎, 陈扬锓, 龚顺生 2004 光学学报 24 1051]

    [16]

    Guo K M, Gao X, Hao Z Q, Lu Y, Sun C K, Lin J Q 2012 Acta Phys. Sin. 61 075212 (in Chinese) [郭凯敏, 高勋, 郝作强, 鲁毅, 孙长凯, 林景全 2012 物理学报 61 075212]

    [17]

    Miyabe M, Oba M, Limura H, Akaoka K, Khumarni A, Kato M, Wakaida I 2015 Spectrochim. Acta B 110 101

    [18]

    Bai X S, Ma Q L, Perrier M, Motto-Ros V, Sabourdy D, Nguyen L, Jalocha A, Yu J 2013 Spectrochim. Acta B 87 27

    [19]

    NIST Atomic Spectra Database Lines Form https://physics.nist.gov/PhysRefData/ASD/lines_form.html [2018-4-2]

    [20]

    Bulgakova N M, Bulgakov A V, Bobrenok O F 2000 Phys. Rev. E 62 5624

    [21]

    Wang X, Zhang S, Cheng X, Zhu E, Hang W, Huang B 2014 Spectrochim. Acta B 99 101

    [22]

    Torrisi L, Caridi F, Margarone D, Borrielli A 2008 Appl. Surf. Sci. 254 2090

    [23]

    Tang X S, Li C Y, Zhu G L, Ji X H, Feng E Y, Zhang W J, Cui Z F 2004 Chin. J. Laser 31 687 (in Chinese) [唐晓闩, 李春燕, 朱光来, 季学韩, 凤尔银, 张为俊, 崔执凤 2004 中国激光 31 687]

    [24]

    Chen X, Bian B M, Shen Z H, Lu J, Ni X W 2003 Micro. Opt. Techn. Lett. 38 75

    [25]

    Sharma A K, Thareja R K 2005 Appl. Surf. Sci. 243 68

  • [1] Li Tian-Cheng, Zhang Xiao-Hai, Sheng Zheng-Mao. Surface plasma wave excited by laser pulse obliquely incident on a double-layer plasma target and ts application. Acta Physica Sinica, 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [2] Yin Jia-Peng, Liu Sheng-Guang. A single long electron bunch detect electromagnetic field evolution in laser plasma. Acta Physica Sinica, 2022, 71(1): 012901. doi: 10.7498/aps.71.20211374
    [3] Qiu Meng-Lin, Wang Guang-Fu, Chu Ying-Jie, Zheng Li, Xu Mi, Yin Peng. Ion beam induced luminescence spectra of lithium fluoride at high-and low-temperature. Acta Physica Sinica, 2017, 66(20): 207801. doi: 10.7498/aps.66.207801
    [4] Han Bo, Wang Fei-Lu, Liang Gui-Yun, Zhao Gang. Excitation processes in experimental photoionized plasmas. Acta Physica Sinica, 2016, 65(11): 110503. doi: 10.7498/aps.65.110503
    [5] Liang Yi-Han, Hu Guang-Yue, Yuan Peng, Wang Yu-Lin, Zhao Bin, Song Fa-Lun, Lu Quan-Ming, Zheng Jian. Temporal evolutions of the plasma density and temperature of laser-produced plasma expansion in an external transverse magnetic field. Acta Physica Sinica, 2015, 64(12): 125204. doi: 10.7498/aps.64.125204
    [6] Li Cheng, Gao Xun, Liu Lu, Lin Jing-Quan. Evolution of laser-induced plasma spectrum intensity under magnetic field confinement. Acta Physica Sinica, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [7] Li Lin-Qian, Shi Yan-Xiang, Wang Fei, Wei Bing. SO-FDTD method of analyzing the reflection and transmission coefficient of weakly ionized dusty plasma layer. Acta Physica Sinica, 2012, 61(12): 125201. doi: 10.7498/aps.61.125201
    [8] Liu Yuan-Xing, Liu Shi-Bing, Song Hai-Ying, He Run. Time-resolved spectrum characteristics of instantaneous plasma generation and evolution processes in nanosecond laser-Cu-target. Acta Physica Sinica, 2012, 61(4): 044204. doi: 10.7498/aps.61.044204
    [9] Liao Qing-Liang, Zhang Yue, Huang Yun-Hua, Qi Jun-Jie, Gao Zhan-Jun, Xia Lian-Sheng, Zhang Huang. Short-pulsed explosive field emission and plasma expansion of carbon nanotube cathodes. Acta Physica Sinica, 2008, 57(3): 1778-1783. doi: 10.7498/aps.57.1778
    [10] Lin Zhao-Xiang, Wu Jin-Quan, Gong Shun-Sheng. Spectroscopic study on the air plasma induced by delayed dual laser pulses. Acta Physica Sinica, 2006, 55(11): 5892-5898. doi: 10.7498/aps.55.5892
    [11] Wang Zhe-Bin, Zhao Bin, Zheng Jian, Hu Guang-Yue, Liu Wan-Dong, Yu Chang-Xuan, Jiang Xiao-Hua, Li Wen-Hong, Liu Shen-Ye, Ding Yong-Kun, Zheng Zhi-Jian. Precisely fitting Thomson scattering spectrum in laser-produced plasmas. Acta Physica Sinica, 2005, 54(1): 211-216. doi: 10.7498/aps.54.211
    [12] Zhang Duan-Ming, Guan Li, Li Zhi-Hua, Zhong Zhi-Cheng, Hou Si-Pu, Yang Feng-Xia, Zheng Ke-Yu. Study on the evolvement of plasma generated by pulsed laser deposition of thin film. Acta Physica Sinica, 2003, 52(1): 242-246. doi: 10.7498/aps.52.242
    [13] Gu Zhen-Yu, Ji Pei-Yong. . Acta Physica Sinica, 2002, 51(5): 1022-1025. doi: 10.7498/aps.51.1022
    [14] MA GUO-BIN, TAN WEI-HAN. SOFT X-RAY LASER IN EXPANSION PLASMA PUMPING BY SHORT PULSED LASER. Acta Physica Sinica, 1994, 43(6): 942-949. doi: 10.7498/aps.43.942
    [15] WANG LONG, LUO YAO-QUAN, LI ZAN-LIANG, WANG WEN-SHU, YANG SI-ZE, LI WEN-LAI, QI XIA-ZHI, ZHAO HUA. MICROWAVE PREIONIZATION PLASMA IN A TOKAMAK. Acta Physica Sinica, 1989, 38(5): 714-721. doi: 10.7498/aps.38.714
    [16] TANG YONG-JIAN, ZHENG ZHI-JIAN, HE HAI-EN, CHUNYU SHU-TAI, GONG MEI-XIA, LEI ZHI-YUAN, LIU JIN-YUAN. EXPANSION PROCESSES OF LASER-HEATED PLASMAS ON CARBON AND GOLD PLANAR TARGET. Acta Physica Sinica, 1989, 38(1): 105-110. doi: 10.7498/aps.38.105
    [17] FENG XIAN-PING, XU ZHI-ZHAN, JIANG ZHI-MING, ZHANG ZHENG-QUAN, CHEN SHI-SHENG, FAN PIN-ZHONG, TIAN LI, ZHOU ZI-JIN. SPACE DISTRIBUTION OF HIGH IONIZING IONS IN PLASMA. Acta Physica Sinica, 1988, 37(7): 1183-1187. doi: 10.7498/aps.37.1183
    [18] WANG RUN-WRN, PAN CHENG-MIN, LIN ZHUN-QI, ZHU DA-QING, HE XIN-FA, ZHAN JI-RAN, WANG XIAO-QING, CHENG ZHONG-YU, BAI JIAN-RONG, JIANG MING-HUA. SPONTANEOUS CURRENT GENERATED FROM LASER PLASMA. Acta Physica Sinica, 1987, 36(4): 452-458. doi: 10.7498/aps.36.452
    [19] SHEN WEN-DA, ZHU SHI-TONG, WANG LI-JUN. FAST-ION EXPANSION IN A SPHERICALLY SYMMETRICAL LASER-PLASMA. Acta Physica Sinica, 1985, 34(9): 1111-1118. doi: 10.7498/aps.34.1111
    [20] XU ZHI-ZHAN, LI AN-MING, CHEN SHI-SHEN, LIN LI-HUANG, LIANG XIANG-CHUN, OUYANG BIN, BI WU-JI, HOU SHING-FA, YIN GUANG-YU, ZHANG SHU-GAN, PAN CHENG-MING. INVESTIGATION OF LASER HEATING OF PLASMAS. Acta Physica Sinica, 1981, 30(8): 1077-1084. doi: 10.7498/aps.30.1077
Metrics
  • Abstract views:  4915
  • PDF Downloads:  133
  • Cited By: 0
Publishing process
  • Received Date:  03 April 2018
  • Accepted Date:  23 May 2018
  • Published Online:  20 September 2019

/

返回文章
返回