Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nematic fluctuations in iron-based superconductors studied by resistivity change under uniaxial pressure

Li Shi-Liang Liu Zhao-Yu Gu Yan-Hong

Citation:

Nematic fluctuations in iron-based superconductors studied by resistivity change under uniaxial pressure

Li Shi-Liang, Liu Zhao-Yu, Gu Yan-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Antiferromagnetic, nematic and superconducting phases have been widely found in iron-based superconductors. The study on their relationships is thus crucial for understanding the low-energy physics and high-temperature superconductivity. The so-called nematic phase represents a spontaneous in-plane rotational symmetry breaking of the electronic states, which results in strong in-plane anisotropic properties. We have developed a uniaxial pressure device, which enables us to obtain nematic susceptibility by studying the resistivity change under uniaxial pressure at low temperature. In this paper, we brief two of our recent researches on nematic fluctuations in iron-based superconductors. The first research shows the presence of a nematic quantum critical point in BaFe2-xNixAs2, which exhibits several characteristics, including the zero mean-field nematic transition temperature x=0.11, broad hump feature in the nematic susceptibility in overdoped samples, strongest nematic susceptibility along the (100) direction at x=0.11, and the divergence of zero-temperature nematic susceptibility at x=0.11 for uniaxial pressure along both the (110) and (100) directions. We further study the nematic susceptibility in many other iron-based superconductors and find that the ordered moment at zero temperature linearly scales with nematic Curie constant, which is obtained from the Curie-Weiss-like temperature dependence of nematic susceptibility in these materials. Accordingly, we propose a universal phase diagram for iron-based superconductors, where superconductivity is achieved by suppressing the long-range antiferromagnetic order in a hypothetical parent compound though the enhancement of nematic fluctuations by doping, including both carrier doping and isovalent doping. Our results suggest that nematic fluctuations play a very important role in both the antiferromagnetism and superconductivity in iron-based superconductors.
      Corresponding author: Li Shi-Liang, slli@iphy.ac.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFA0302903) and the National Natural Science Foundation of China (Grant No. 11674406).
    [1]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179

    [2]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [3]

    Stephen M J, Straley J P 1974 Rev. Mod. Phys. 46 617

    [4]

    Kivelson S A, Fradkin E, Emery V J 1998 Nature 393 550

    [5]

    Oganesyan V, Kivelson S A, Fradkin E 2001 Phys. Rev. B 64 195109

    [6]

    Ando Y, Segawa K, Komiya S, Lavrov A N 2002 Phys. Rev. Lett. 88 137005

    [7]

    Daou R, Chang J, LeBoeuf D, Cyr-Choinire O, Lalibert F, Doiron-Leyraud N, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Taillefer L 2010 Nature 463 519

    [8]

    Hinkov V, Haug D, Fauqu B, Bourges P, Sidis Y, Ivanov A, Bernhard C, Lin C T, Keimer B 2008 Science 319 597

    [9]

    Lawler M J, Fujita K, Lee J, Schmidt A R, Kohsaka Y, Kim C K, Eisaki H, Uchida S, Davis J C, Sethna J P, Kim E A 2010 Nature 466 347

    [10]

    Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97

    [11]

    Chu J H, Analytis J G, de Greve K, McMahon P L, Islam Z, Yamamoto Y, Fisher I R 2010 Science 329 824

    [12]

    Lu X, Park J T, Zhang R, Luo H, Nevidomskyy A H, Si Q, Dai P 2014 Science 345 657

    [13]

    Yi M, Lu D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R, Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878

    [14]

    Liu Z, Gu Y, Zhang W, Gong D, Zhang W, Xie T, Lu X, Ma X, Zhang X, Zhang R, Zhu J, Ren C, Shan L, Qiu X, Dai P, Yang Y, Luo H, Li S 2016 Phys. Rev. Lett. 117 157002

    [15]

    Gu Y, Liu Z, Xie T, Zhang W, Gong D, Hu D, Ma X, Li C, Zhao L, Lin L, Xu Z, Tan G, Chen G, Meng Z Y, Yang Y, Luo H, Li S 2017 Phys. Rev. Lett. 119 157001

    [16]

    Chu J H, Kuo H H, Analytis J G, Fisher I R 2012 Science 337 710

    [17]

    Lederer S, Schattner Y, Berg E, Kivelson S A 2015 Phys. Rev. Lett. 114 097001

    [18]

    Metlitski M A, Mross D F, Sachdev S, Senthil T 2015 Phys. Rev. B 91 115111

    [19]

    Lederer S, Schattner Y, Berg E, Kivelson S A 2017 Proc. Natl. Acad. Sci. USA 114 4905

    [20]

    Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139

    [21]

    Bhmer A E, Burger P, Hardy F, Wolf T, Schweiss P, Fromknecht R, Meingast C 2014 Phys. Rev. Lett. 112 047001

    [22]

    Gallais Y, Fernandes R M, Paul I, Chauviere L, Yang Y X, Masson M A, Forget A 2013 Phys. Rev. Lett. 111 267001

    [23]

    Thorsm lle V K, Khodas M, Yin Z P, Zhang C, Carr S V, Dai P, Blumberg G 2016 Phys. Rev. B 93 054515

    [24]

    Kuo H H, Chu J H, Palmstrom J C, Kivelson S A, Fisher I R 2016 Science 352 958

    [25]

    Lhneysen H, Rosch A, Vojta M, Wlfle P 2007 Rev. Mod. Phys. 79 1015

    [26]

    Schattner Y, Lederer S, Kivelson S A, Berg E 2016 Phys. Rev. X 6 031028

    [27]

    Coldea R, Tennant D A, Wheeler E M, Wawrzynska E, Prabhakaran D, Telling M, Kiefer K 2010 Science 327 177

    [28]

    Dai P 2015 Rev. Mod. Phys. 87 855

    [29]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Terashima T 2010 Phys. Rev. B 81 184519

    [30]

    Fernandes R M, Abrahams E, Schmalian J 2011 Phys. Rev. Lett. 107 217002

    [31]

    Yin Z P, Haule K, Kotliar G 2011 Nat. Mater. 10 932

    [32]

    Tam Y T, Yao D X, Ku W 2015 Phys. Rev. Lett. 115 117001

    [33]

    Luo H, Zhang R, Laver M, Yamani Z, Wang M, Lu X, Lynn J W 2012 Phys. Rev. Lett. 108 247002

    [34]

    Hosono H, Kuroki K 2015 Physica C 514 399

    [35]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yan Q 2016 Nat. Commun. 7 12146

    [36]

    Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud'Ko S L, Hannahs S T 2010 Phys. Rev. B 82 024519

  • [1]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179

    [2]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [3]

    Stephen M J, Straley J P 1974 Rev. Mod. Phys. 46 617

    [4]

    Kivelson S A, Fradkin E, Emery V J 1998 Nature 393 550

    [5]

    Oganesyan V, Kivelson S A, Fradkin E 2001 Phys. Rev. B 64 195109

    [6]

    Ando Y, Segawa K, Komiya S, Lavrov A N 2002 Phys. Rev. Lett. 88 137005

    [7]

    Daou R, Chang J, LeBoeuf D, Cyr-Choinire O, Lalibert F, Doiron-Leyraud N, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Taillefer L 2010 Nature 463 519

    [8]

    Hinkov V, Haug D, Fauqu B, Bourges P, Sidis Y, Ivanov A, Bernhard C, Lin C T, Keimer B 2008 Science 319 597

    [9]

    Lawler M J, Fujita K, Lee J, Schmidt A R, Kohsaka Y, Kim C K, Eisaki H, Uchida S, Davis J C, Sethna J P, Kim E A 2010 Nature 466 347

    [10]

    Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97

    [11]

    Chu J H, Analytis J G, de Greve K, McMahon P L, Islam Z, Yamamoto Y, Fisher I R 2010 Science 329 824

    [12]

    Lu X, Park J T, Zhang R, Luo H, Nevidomskyy A H, Si Q, Dai P 2014 Science 345 657

    [13]

    Yi M, Lu D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R, Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878

    [14]

    Liu Z, Gu Y, Zhang W, Gong D, Zhang W, Xie T, Lu X, Ma X, Zhang X, Zhang R, Zhu J, Ren C, Shan L, Qiu X, Dai P, Yang Y, Luo H, Li S 2016 Phys. Rev. Lett. 117 157002

    [15]

    Gu Y, Liu Z, Xie T, Zhang W, Gong D, Hu D, Ma X, Li C, Zhao L, Lin L, Xu Z, Tan G, Chen G, Meng Z Y, Yang Y, Luo H, Li S 2017 Phys. Rev. Lett. 119 157001

    [16]

    Chu J H, Kuo H H, Analytis J G, Fisher I R 2012 Science 337 710

    [17]

    Lederer S, Schattner Y, Berg E, Kivelson S A 2015 Phys. Rev. Lett. 114 097001

    [18]

    Metlitski M A, Mross D F, Sachdev S, Senthil T 2015 Phys. Rev. B 91 115111

    [19]

    Lederer S, Schattner Y, Berg E, Kivelson S A 2017 Proc. Natl. Acad. Sci. USA 114 4905

    [20]

    Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139

    [21]

    Bhmer A E, Burger P, Hardy F, Wolf T, Schweiss P, Fromknecht R, Meingast C 2014 Phys. Rev. Lett. 112 047001

    [22]

    Gallais Y, Fernandes R M, Paul I, Chauviere L, Yang Y X, Masson M A, Forget A 2013 Phys. Rev. Lett. 111 267001

    [23]

    Thorsm lle V K, Khodas M, Yin Z P, Zhang C, Carr S V, Dai P, Blumberg G 2016 Phys. Rev. B 93 054515

    [24]

    Kuo H H, Chu J H, Palmstrom J C, Kivelson S A, Fisher I R 2016 Science 352 958

    [25]

    Lhneysen H, Rosch A, Vojta M, Wlfle P 2007 Rev. Mod. Phys. 79 1015

    [26]

    Schattner Y, Lederer S, Kivelson S A, Berg E 2016 Phys. Rev. X 6 031028

    [27]

    Coldea R, Tennant D A, Wheeler E M, Wawrzynska E, Prabhakaran D, Telling M, Kiefer K 2010 Science 327 177

    [28]

    Dai P 2015 Rev. Mod. Phys. 87 855

    [29]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Terashima T 2010 Phys. Rev. B 81 184519

    [30]

    Fernandes R M, Abrahams E, Schmalian J 2011 Phys. Rev. Lett. 107 217002

    [31]

    Yin Z P, Haule K, Kotliar G 2011 Nat. Mater. 10 932

    [32]

    Tam Y T, Yao D X, Ku W 2015 Phys. Rev. Lett. 115 117001

    [33]

    Luo H, Zhang R, Laver M, Yamani Z, Wang M, Lu X, Lynn J W 2012 Phys. Rev. Lett. 108 247002

    [34]

    Hosono H, Kuroki K 2015 Physica C 514 399

    [35]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yan Q 2016 Nat. Commun. 7 12146

    [36]

    Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud'Ko S L, Hannahs S T 2010 Phys. Rev. B 82 024519

  • [1] Li Geng, Ding Hong, Wang Zi-Qiang, Gao Hong-Jun. Majorana zero mode and its lattice construction in iron-based superconductors. Acta Physica Sinica, 2024, 73(3): 030302. doi: 10.7498/aps.73.20232022
    [2] Wen Hai-Hu. Brief introduction to flux pinning and vortex dynamics in high temperature superconductors. Acta Physica Sinica, 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [3] Hu Jiang-Ping. Searching for new unconventional high temperature superconductors. Acta Physica Sinica, 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [4] Li Miao-Cong, Tao Qian, Xu Zhu-An. The transport properties of iron-based superconductors. Acta Physica Sinica, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [5] Kong Ling-Yuan, Ding Hong. Emergent vortex Majorana zero mode in iron-based superconductors. Acta Physica Sinica, 2020, 69(11): 110301. doi: 10.7498/aps.69.20200717
    [6] Jin Shi-Feng, Guo Jian-Gang, Wang Gang, Chen Xiao-Long. Research progress on FeSe-based superconducting materials. Acta Physica Sinica, 2018, 67(20): 207412. doi: 10.7498/aps.67.20181701
    [7] Mu Gang, Ma Yong-Hui. Single crystal growth and physical property study of 1111-type Fe-based superconducting system CaFeAsF. Acta Physica Sinica, 2018, 67(17): 177401. doi: 10.7498/aps.67.20181371
    [8] Wang Zhi-Cheng, Cao Guang-Han. Self-doped iron-based superconductors with intergrowth structures. Acta Physica Sinica, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [9] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [10] Lin Tong, Hu Die, Shi Li-Yu, Zhang Si-Jie, Liu Yan-Qi, Lv Jia-Lin, Dong Tao, Zhao Jun, Wang Nan-Lin. Infrared spectroscopy study of ironbased superconductor Li0.8Fe0.2 ODFeSe. Acta Physica Sinica, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [11] Wang Nai-Zhou, Shi Meng-Zhu, Lei Bin, Chen Xian-Hui. Exploration and physical investigation of FeSe-based superconductors. Acta Physica Sinica, 2018, 67(20): 207408. doi: 10.7498/aps.67.20181496
    [12] Gong Dong-Liang, Luo Hui-Qian. Antiferromagnetic order and spin dynamics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [13] Guo Jing, Wu Qi, Sun Li-Ling. Pressure-induced phenomena and physics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [14] Zhao Jing-Long, Dong Zheng-Chao, Zhong Chong-Gui, Li Cheng-Di. Tunneling spectra for quantum wire/iron-based superconductor junction. Acta Physica Sinica, 2015, 64(5): 057401. doi: 10.7498/aps.64.057401
    [15] Du Zeng-Yi, Fang De-Long, Wang Zhen-Yu, Du Guan, Yang Xiong, Yang Huan, Gu Gen-Da, Wen Hai-Hu. Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5. Acta Physica Sinica, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [16] Yu Rong. Electron correlations and orbital selectivities in multiorbital models for iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [17] Li Shi-Chao, Gan Yuan, Wang Jing-Hui, Ran Ke-Jing, Wen Jin-Sheng. Magnetic neutron scattering studies on the Fe-based superconductor system Fe1+yTe1-xSex. Acta Physica Sinica, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [18] Li Zheng, Zhou Rui, Zheng Guo-Qing. Quantum criticalities in carrier-doped iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [19] Xing Zhong-Wen, Liu Mei, Li Bin. Magnetism and phonon softening of LiFeAs superconductors. Acta Physica Sinica, 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [20] Liu Su, Li Bin, Wang Wei, Wang Jun, Liu Mei. Electronic structure and magnetism of SrFeAsF and Co-doped superconductor SrFe0.875Co0.125AsF. Acta Physica Sinica, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
Metrics
  • Abstract views:  5476
  • PDF Downloads:  181
  • Cited By: 0
Publishing process
  • Received Date:  09 April 2018
  • Accepted Date:  26 April 2018
  • Published Online:  20 June 2019

/

返回文章
返回