Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress on octave supercontinuum generation in solid medium

Zhao Kun Xu Si-Yuan Jiang Yu-Jiao Gao Yi-Tan Liu Yang-Yang He Peng Teng Hao Zhu Jiang-Feng Wei Zhi-Yi

Citation:

Research progress on octave supercontinuum generation in solid medium

Zhao Kun, Xu Si-Yuan, Jiang Yu-Jiao, Gao Yi-Tan, Liu Yang-Yang, He Peng, Teng Hao, Zhu Jiang-Feng, Wei Zhi-Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • When a short laser pulse passes through transparent medium, the spectrum may be broadened due to nonlinear optical effects, and a coherent octave supercontinuum may be generated under certain conditions. Such a supercontinuum may be compressed into a femtosecond few-cycle pulse, which has many applications in ultrafast optics and beyond. Spectral broadening has been achieved experimentally in gases, liquids, and solids. Current mainstream technique of supercontinuum generation is to send multi-cycle femtosecond pulses through inert-gas-filled hollow-core fibers. However, due to the limitation of the core diameter, the hollow-core fiber cannot work with high-energy laser pulses. With a much higher nonlinear index of refraction, solid-state material is naturally a more promising candidate for supercontinuum generation, but it is difficult to obtain a near-octave spectrum in one piece of solid without filamentation. The optical Kerr effect in solids triggers self-phase modulation (SPM) which induces desired spectral broadening as well as self-focusing, thus causing the laser intensity to rise drastically with substaintial multiphoton excitation and ionization leading to plasma formation. This behavior results in filamentation and optical breakdown, and eventually permanent damage to the material occurs if the laser pulse energy is high enough. Using a thin plate of dielectrics may minimize the effect of self-focusing-the beam exits from the nonlinear medium before it starts to shrink and causes damage. However, one thin plate does not provide enough nonlinear effect to generate a broad spectrum. To prevent disastrous self-focusing while achieving spectral broadening, using multiple Kerr elements has been proposed theoretically and demonstrated experimentally at microjoule to millijoule level. In such a configuration, a femtosecond laser pulse is being spectrally broadened via SPM in the thin plates, while self-focusing converges the beam in each plate but the focal spot is located outside the plate. Once the converging beam passes through its focal spot in air, the beam diverges and enters the next plate to repeat this process until the spectral broadening stops after several elements. Using this method, octave supercontinuum with energies at microjoule to millijoule level has been experimentally obtained in a spectral range covering near-ultraviolet to mid-infrared. In this paper, we review the development of supercontinuum generation in multiple thin solid plates, outline the principle of supercontinuum generation in this new type of thin solid medium, brief the experiments using this new method in recent years, and look into the prospects for its development.
      Corresponding author: Wei Zhi-Yi, zywei@iphy.ac.cn
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 61690221), the Key Program of the National Natural Science Foundation of China (Grant No. 11434016), the National Natural Science Foundation of China (Grant Nos. 11574384, 11674386), the National Key RD Program of China (Grant No. 2017YFB0405202), the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201658), the Frontier Science Key Research Project of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-JSC006), and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB16030200).
    [1]

    Nisoli M, de Silvestri S, Svelto O, Szipcs R, Ferencz K, Spielmann Ch, Sartania S, Krausz F 1997 Opt. Lett. 22 522

    [2]

    Shimizu F 1967 Phys. Rev. Lett. 19 1097

    [3]

    Bradler M, Baum P, Riedle E 2009 Appl. Phys. B 97 561

    [4]

    Bohman S, Suda A, Kanai T, Yamaguchi S, Midorikawa K 2010 Opt. Lett. 35 1887

    [5]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545

    [6]

    Zhang W, Teng H, Yun C X, Zhong X, Hou X, Wei Z Y 2010 Chin. Phys. Lett. 27 054211

    [7]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201

    [8]

    Chini M, Zhao K, Chang Z 2014 Nat. Photon. 8 178

    [9]

    Mashiko H, Nakamura C M, Li C, Moon E, Wang H, Tackett J, Chang Z 2007 Appl. Phys. Lett. 90 161114

    [10]

    Yin Y, Li J, Ren X, Zhao K, Wu Y, Cunningham E, Chang Z 2016 Opt. Lett. 41 1142

    [11]

    Bradler M, Riedle E 2014 J. Opt. Soc. Am. B 31 1465

    [12]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635

    [13]

    Humbert G, Wadsworth W J, Leon-Saval S G, Knight J C, Birks T A, Russell P S J, Lederer M J, Kopf D, Wiesauer K, Breuer E I, Stifter D 2006 Opt. Express 14 1596

    [14]

    Rolland C, Corkum P B 1988 J. Opt. Soc. Am. B 5 641

    [15]

    Dubietis A, Tamoauskas G,uminas R, Jukna V, Couairon A 2017 Lithuanian J. Phys. 57 113

    [16]

    Silva F, Austin D, Thai A, Baudisch M, Hemmer M, Faccio D, Couairon A, Biegert J 2012 Nat. Commun. 3 807

    [17]

    Hemmer M, Baudisch M, Thai A, Couairon A, Biegert J 2013 Opt. Express 21 28095

    [18]

    Lanin A A, Voronin A A, Stepanov E A, Fedotov A B, Zheltikov A M 2015 Opt. Lett. 40 974

    [19]

    Liang H, Krogen P, Grynko R, Novak O, Chang C L, Stein G J, Weerawarne D, Shim B, Krtner F X, Hong K H 2015 Opt. Lett. 40 1069

    [20]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47

    [21]

    Shumakova V, Malevich P, Aliauskas S, Voronin A, Zheltikov A M, Faccio D, Kartashov D, Baltuka A, Pugžlys A 2016 Nat. Commun. 7 12877

    [22]

    Petrov V, Rudolph W, Wilhelmi B 1989 J. Mod. Opt. 36 587

    [23]

    Krebs N, Pugliesi I, Riedle E 2013 Appl. Sci. 3 153

    [24]

    Vlasov S N, Koposova E V, Yashin V E 2012 Quantum Electron. 42 989

    [25]

    Lu C, Tsou Y, Chen H, Chen B, Cheng Y, Yang S, Chen M, Hsu C, Kung A 2014 Optica 1 400

    [26]

    He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474

    [27]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 592

    [28]

    Yang G, Shen Y R 1984 Opt. Lett. 9 510

    [29]

    Rothenberg J E 1992 Opt. Lett. 17 1340

    [30]

    Gustafson T K, Taran J P, Haus H A, Lifsitz J R, Kelley P L 1969 Phys. Rev. 177 306

    [31]

    Siegman A 1986 Lasers (Sausalito:University Science Books) Ch. 10

    [32]

    Fork R L, Shank C V, Hirlimann C, Yen R, Tomlinson W J 1983 Opt. Lett. 8 1

    [33]

    Alfano R R 2016 The Supercontinuum Laser Source (3rd Ed.) (New York:Springer)

    [34]

    Centurion M, Porter M A, Kevrekidis P G, Psaltis D 2006 Phys. Rev. Lett. 97 033903

    [35]

    Voronin A A, Zheltikov A M, Ditmire T, Rus B, Korn G 2013 Opt. Commun. 291 299

    [36]

    Cheng Y C, Lu C H, Lin Y Y, Kung A H 2016 Opt. Express 24 7224

    [37]

    Seidel M, Arisholm G, Brons J, Pervak V, Pronin O 2016 Opt. Express 24 9412

    [38]

    Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519

    [39]

    Liu Y Y, Zhao K, He P, Huang H D, Teng H, Wei Z Y 2017 Chin. Phys. Lett. 34 074204

    [40]

    Beetar J E, Gholam-Mirzaei S, Chini M 2018 Appl. Phys. Lett. 112 051102

    [41]

    Budriūnas R, Kučinskas D, Varanavičius A 2017 Appl. Phys. B 123 212

  • [1]

    Nisoli M, de Silvestri S, Svelto O, Szipcs R, Ferencz K, Spielmann Ch, Sartania S, Krausz F 1997 Opt. Lett. 22 522

    [2]

    Shimizu F 1967 Phys. Rev. Lett. 19 1097

    [3]

    Bradler M, Baum P, Riedle E 2009 Appl. Phys. B 97 561

    [4]

    Bohman S, Suda A, Kanai T, Yamaguchi S, Midorikawa K 2010 Opt. Lett. 35 1887

    [5]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545

    [6]

    Zhang W, Teng H, Yun C X, Zhong X, Hou X, Wei Z Y 2010 Chin. Phys. Lett. 27 054211

    [7]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201

    [8]

    Chini M, Zhao K, Chang Z 2014 Nat. Photon. 8 178

    [9]

    Mashiko H, Nakamura C M, Li C, Moon E, Wang H, Tackett J, Chang Z 2007 Appl. Phys. Lett. 90 161114

    [10]

    Yin Y, Li J, Ren X, Zhao K, Wu Y, Cunningham E, Chang Z 2016 Opt. Lett. 41 1142

    [11]

    Bradler M, Riedle E 2014 J. Opt. Soc. Am. B 31 1465

    [12]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635

    [13]

    Humbert G, Wadsworth W J, Leon-Saval S G, Knight J C, Birks T A, Russell P S J, Lederer M J, Kopf D, Wiesauer K, Breuer E I, Stifter D 2006 Opt. Express 14 1596

    [14]

    Rolland C, Corkum P B 1988 J. Opt. Soc. Am. B 5 641

    [15]

    Dubietis A, Tamoauskas G,uminas R, Jukna V, Couairon A 2017 Lithuanian J. Phys. 57 113

    [16]

    Silva F, Austin D, Thai A, Baudisch M, Hemmer M, Faccio D, Couairon A, Biegert J 2012 Nat. Commun. 3 807

    [17]

    Hemmer M, Baudisch M, Thai A, Couairon A, Biegert J 2013 Opt. Express 21 28095

    [18]

    Lanin A A, Voronin A A, Stepanov E A, Fedotov A B, Zheltikov A M 2015 Opt. Lett. 40 974

    [19]

    Liang H, Krogen P, Grynko R, Novak O, Chang C L, Stein G J, Weerawarne D, Shim B, Krtner F X, Hong K H 2015 Opt. Lett. 40 1069

    [20]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47

    [21]

    Shumakova V, Malevich P, Aliauskas S, Voronin A, Zheltikov A M, Faccio D, Kartashov D, Baltuka A, Pugžlys A 2016 Nat. Commun. 7 12877

    [22]

    Petrov V, Rudolph W, Wilhelmi B 1989 J. Mod. Opt. 36 587

    [23]

    Krebs N, Pugliesi I, Riedle E 2013 Appl. Sci. 3 153

    [24]

    Vlasov S N, Koposova E V, Yashin V E 2012 Quantum Electron. 42 989

    [25]

    Lu C, Tsou Y, Chen H, Chen B, Cheng Y, Yang S, Chen M, Hsu C, Kung A 2014 Optica 1 400

    [26]

    He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474

    [27]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 592

    [28]

    Yang G, Shen Y R 1984 Opt. Lett. 9 510

    [29]

    Rothenberg J E 1992 Opt. Lett. 17 1340

    [30]

    Gustafson T K, Taran J P, Haus H A, Lifsitz J R, Kelley P L 1969 Phys. Rev. 177 306

    [31]

    Siegman A 1986 Lasers (Sausalito:University Science Books) Ch. 10

    [32]

    Fork R L, Shank C V, Hirlimann C, Yen R, Tomlinson W J 1983 Opt. Lett. 8 1

    [33]

    Alfano R R 2016 The Supercontinuum Laser Source (3rd Ed.) (New York:Springer)

    [34]

    Centurion M, Porter M A, Kevrekidis P G, Psaltis D 2006 Phys. Rev. Lett. 97 033903

    [35]

    Voronin A A, Zheltikov A M, Ditmire T, Rus B, Korn G 2013 Opt. Commun. 291 299

    [36]

    Cheng Y C, Lu C H, Lin Y Y, Kung A H 2016 Opt. Express 24 7224

    [37]

    Seidel M, Arisholm G, Brons J, Pervak V, Pronin O 2016 Opt. Express 24 9412

    [38]

    Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519

    [39]

    Liu Y Y, Zhao K, He P, Huang H D, Teng H, Wei Z Y 2017 Chin. Phys. Lett. 34 074204

    [40]

    Beetar J E, Gholam-Mirzaei S, Chini M 2018 Appl. Phys. Lett. 112 051102

    [41]

    Budriūnas R, Kučinskas D, Varanavičius A 2017 Appl. Phys. B 123 212

  • [1] Wang Jing-Shang, Wang Dong-Liang, Chang Guo-Qing. Dispersion management dual-pass self-phase modulation-enabled spectral selection. Acta Physica Sinica, 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [2] Xiong Feng, Peng Zhi-Min, Ding Yan-Jun, Du Yan-Jun. Experimental study of nonlinear phenomenon of NO ultraviolet broadband absorption spectroscopy. Acta Physica Sinica, 2022, 71(20): 203302. doi: 10.7498/aps.71.20220975
    [3] Sun Yong-Feng, Xu Liang, Shen Xian-Chun, Jin Ling, Xu Han-Yang, Cheng Xiao-Xiao, Wang Yu-Hao, Liu Wen-Qing, Liu Jian-Guo. High-order nonlinear response correction method for infrared radiation detector. Acta Physica Sinica, 2021, 70(6): 060701. doi: 10.7498/aps.70.20201530
    [4] Liu Yang-Yang, Zhao Kun, He Peng, Jiang Yu-Jiao, Huang Hang-Dong, Teng Hao, Wei Zhi-Yi. High harmonic generation experiments based on solid-state supercontinuum. Acta Physica Sinica, 2017, 66(13): 134207. doi: 10.7498/aps.66.134207
    [5] Jia Yu-Lei, Zhu Zheng, Han Hai-Nian, Tian Wen-Long, Xie Yang, Zhang Long, Wei Zhi-Yi. Generation of octave-spanning super-continuum in tapered single mode fibre pumped by femtosecond Yb:YCOB laser. Acta Physica Sinica, 2015, 64(5): 054206. doi: 10.7498/aps.64.054206
    [6] Jia Nan, Li Tang-Jun, Sun Jian, Zhong Kang-Ping, Wang Mu-Guang. Coherence properties of supercontinuum generated by a picosecond pulse in normal dispersion region of highly nonlinear fiber. Acta Physica Sinica, 2014, 63(8): 084203. doi: 10.7498/aps.63.084203
    [7] Zhang Long, Han Hai-Nian, Hou Lei, Yu Zi-Jiao, Zhu Zheng, Jia Yu-Lei, Wei Zhi-Yi. Supercontinuum generation in photonic crystal fiber and tapered single-mode fiber. Acta Physica Sinica, 2014, 63(19): 194208. doi: 10.7498/aps.63.194208
    [8] Ma Jun, Wu Xin-Yi, Qin Hui-Xin. Realization of synchronization between hyperchaotic systems by using a scheme of intermittent linear coupling. Acta Physica Sinica, 2013, 62(17): 170502. doi: 10.7498/aps.62.170502
    [9] Chen Hong-Wei, Guo Liang, Jin Ai-Jun, Chen Sheng-Ping, Hou Jing, Lu Qi-Sheng. Investigation of hundred-watt-level supercontinuum generation in photonic crystal fiber. Acta Physica Sinica, 2013, 62(15): 154207. doi: 10.7498/aps.62.154207
    [10] Liu Shuang-Long, Chen Dan-Ni, Liu Wei, Niu Han-Ben. Supercontinuum generation based on all normal dispersion photonic crystal fiber. Acta Physica Sinica, 2013, 62(18): 184210. doi: 10.7498/aps.62.184210
    [11] Qiu Wei, Lü Pin, Ma Ying-Chi, Xu Xiao-Juan, Liu Dian, Zhang Cheng-Hua. The research on saturation of fast light in homogeneously broaden materials with gain. Acta Physica Sinica, 2012, 61(10): 104209. doi: 10.7498/aps.61.104209
    [12] Song Rui, Hou Jing, Chen Sheng-Ping, Wang Yan-Bin, Lu Qi-Sheng. All-fiber 177.6 W supercontinuum source. Acta Physica Sinica, 2012, 61(5): 054217. doi: 10.7498/aps.61.054217
    [13] Li Qian-Guang, Yi Xu-Nong, Zhang Xiu, Lü Hao, Ding Yao-Ming. A supercontinuum in the plateau generated by asymmetric molecular gases exposed to a two-color field. Acta Physica Sinica, 2011, 60(1): 017203. doi: 10.7498/aps.60.017203
    [14] Yu Ling-Yao, Yin Jun, Wan Hui, Liu Xing, Qu Jun-Le, Niu Han-Ben, Lin Zi-Yang. Study on the method and experiment of time-resolved coherent anti-Stokes Raman scattering using supercontinuum excitation. Acta Physica Sinica, 2010, 59(8): 5406-5411. doi: 10.7498/aps.59.5406
    [15] Ji Ling-Ling, Chen Wei, Cao Ying-Chun, Yang Zhen-Yu, Lu Pei-Xiang. Supercontinuum generation based on fission of higher-order solitons in bi-refringent photonic crystal fibers. Acta Physica Sinica, 2009, 58(8): 5462-5466. doi: 10.7498/aps.58.5462
    [16] Liu Wei-Hua, Song Xiao-Zhong, Wang Yi-Shan, Liu Hong-Jun, Zhao Wei, Liu Xue-Ming, Peng Qin-Jun, Xu Zu-Yan. Experimental research of supercontinuum generation by femtosecond pulse in highly nonlinear photonic crystal fiber. Acta Physica Sinica, 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [17] Yan Guo-Jun, Chen Guang-De, Wu Ye-Long, Yang Jian-Qing. Second-harmonic power generated in the absorbing and birefringent nonlinear medium. Acta Physica Sinica, 2008, 57(1): 265-270. doi: 10.7498/aps.57.265
    [18] Hu Ming-Lie, Wang Qing-Yue, Li Yan-Feng, Wang Zhuan, Zhang Zhi-Gang, Chai Lu, Zhang Ruo-Bing. Experimental analysis of the dependence factor duringsupercontinuum generation in photonic crystal fiber*. Acta Physica Sinica, 2004, 53(12): 4243-4247. doi: 10.7498/aps.53.4243
    [19] Wang Zhuan, Wang Qing-Yue, Han Ying-Kui, Cao Shi-Ying, Zhang Zhi-Gang, Chai Lu. Octave-spanning spectrum generation in Ti: sapphire oscillator. Acta Physica Sinica, 2004, 53(10): 3375-3378. doi: 10.7498/aps.53.3375
    [20] GAO JIN-FENG, LUO XIAN-JUE, MA XI-KUI. A NONLINEAR FEEDBACK APPROACH FOR REALIZING ANY CONTINUOUS TIME SCALAR (HYPER) CHAOTIC SIGNAL SYNCHRONIZATION CONTROL. Acta Physica Sinica, 2000, 49(5): 838-843. doi: 10.7498/aps.49.838
Metrics
  • Abstract views:  5544
  • PDF Downloads:  251
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2018
  • Accepted Date:  09 May 2018
  • Published Online:  20 June 2019

/

返回文章
返回