Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer

Li Shi-Yu Tian Jian-Feng Yang Chen Zuo Guan-Hua Zhang Yu-Chi Zhang Tian-Cai

Citation:

Effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer

Li Shi-Yu, Tian Jian-Feng, Yang Chen, Zuo Guan-Hua, Zhang Yu-Chi, Zhang Tian-Cai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Three kinds of quantum light sources:Fock state, correlated Fock-state and squeezed vacuum state, which serve as the injection end of Mach-Zehnder interferometer (MZI) are investigated. The effect of detection quantum efficiency on the sensitivity of phase measurement in MZI is analyzed by using the intensity difference detection scheme. By analyzing the MZI system, the quantitative relationship between the sensitivity of phase measurement and the detection efficiency is obtained. It is found that the phase sensitivity cannot go beyond the standard quantum limit in any case when the Fock state is injected into interferometer, that is, the Fock state does not realize quantum enhanced measurement (QEM). And the injection of correlated Fock-state or squeezed vacuum state of light can go beyond the standard quantum limit, but the conditions for realizing quantum enhancement are different, quantum enhancement can only be achieved when the detection efficiency is greater than 75% for correlated Fock-state, or the squeezed vacuum state of light is injected into interferometer. There is no limitation of the minimum detection efficiency for realizing quantum enhancement on squeezed vacuum state. In principle, quantum enhancement can be achieved as long as the squeezed vacuum state is injected. The influence of detection efficiency on the phase sensitivity is investigated when the correlated Fock-state and the squeezed vacuum state are injected into the MZI. It is found that the phase sensitivity or quantum enhancement becomes better as the quantum efficiency of the detection system turns higher. And it is the squeezed vacuum state injected into the interferometer that has better quantum enhancement effect than the correlated Fock-state. In this study, the requirements for the detection efficiency for realizing QEM in experiment are given, which is of great significance for studying the QEM, when taking the real experimental system into account. In addition, the conclusions obtained from the MZI model discussed can also be used to analyze the sensitivity of detecting the gravitational wave, it explains that the improvement of detector efficiency can indeed improve the sensitivity to gravitational wave detection, which will play an important role in exploring gravitational waves and understanding the time and space to reveal the mystery of the universe in the future.
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304502) and the National Natural Science Foundation of China (Grants Nos. 11634008, 11674203, 11574187, 61227902).
    [1]

    Caves C M 1981 Phys. Rev. D 23 1693

    [2]

    LIGO Scientific Collaboration and Virgo Collaboration 2016 Phys. Rev. Lett. 116 241103

    [3]

    Grangier P, Slusher R E, Yurke B, Laporta A 1987 Phys. Rev. Lett. 59 2153

    [4]

    Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278

    [5]

    Holland M J, Burnett K 1993 Phys. Rev. Lett. 71 1355

    [6]

    Kim T, Shin J, Ha Y, Kim H, Park G, Noh T G, Hong C K 1998 Opt. Commun. 156 37

    [7]

    Campos R A, Gerry C C, Benmoussa A 2003 Phys. Rev. A 68 023810

    [8]

    Higgins B L, Berry D W, Bartlett S D, Wiseman H M, Pryde G J 2007 Nature 450 393

    [9]

    Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H, Dowling J P 2010 Phys. Rev. Lett. 104 103602

    [10]

    Seshadreesan K P, Anisimov P M, Lee H, Dowling J P 2011 New J. Phys. 13 083026

    [11]

    Li W F, Du J J, Wen R J, Li G, Zhang T C 2014 J. Appl. Phys. 115 123106

    [12]

    Bollinger J J, Itano W M, Wineland D J, Heinzen D J 1996 Phys. Rev. A 54 R4649

    [13]

    Nagata T, Okamoto R, O'Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [14]

    Gerry C C, Mimih J 2010 Phys. Rev. A 82 013831

    [15]

    Joo J, Munro W J, Spiller T P 2011 Phys. Rev. Lett. 107 083601

    [16]

    Kim T, Ha Y, Shin J, Kim H, Park G, Kim K, Noh T G, Hong C K 1999 Phys. Rev. A 60 708

    [17]

    Gilbert G, Hamrick M, Weinstein Y S 2008 J. Opt. Soc. Am. B 25 1336

    [18]

    Genoni M G, Olivares S, Paris M G A 2011 Phys. Rev. Lett. 106 153603

    [19]

    Genoni M G, Olivares S, Brivio D, Cialdi S, Cipriani D, Santamato A, Vezzoli S, Paris M G A 2012 Phys. Rev. A 85 043817

    [20]

    Datta A, Zhang L J, Thomas-Peter N, Dorner U, Smith B J, Walmsley I A 2011 Phys. Rev. A 83 063836

    [21]

    Xie D, Peng J Y 2013 Sci. China: Phys. Mech. Astron. 56 593

    [22]

    Xin J, Wang H L, Jing J T 2016 Appl. Phys. Lett. 109 051107

    [23]

    Xie D, Chen H F 2017 J. Korean Phys. Soc. 70 1016

    [24]

    Ben-Aryeh Y 2012 J. Opt. Soc. Am. B 29 2754

    [25]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [26]

    Yurke B 1986 Phys. Rev. Lett. 56 1515

    [27]

    Yurke B 1985 Phys. Rev. A 32 311

    [28]

    Ou Z Y 1996 Phys. Rev. Lett. 77 2352

    [29]

    Demkowicz-Dobrzanski R, Banaszek K, Schnabel R 2013 Phys. Rev. A 88 041802

    [30]

    The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962

    [31]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

  • [1]

    Caves C M 1981 Phys. Rev. D 23 1693

    [2]

    LIGO Scientific Collaboration and Virgo Collaboration 2016 Phys. Rev. Lett. 116 241103

    [3]

    Grangier P, Slusher R E, Yurke B, Laporta A 1987 Phys. Rev. Lett. 59 2153

    [4]

    Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278

    [5]

    Holland M J, Burnett K 1993 Phys. Rev. Lett. 71 1355

    [6]

    Kim T, Shin J, Ha Y, Kim H, Park G, Noh T G, Hong C K 1998 Opt. Commun. 156 37

    [7]

    Campos R A, Gerry C C, Benmoussa A 2003 Phys. Rev. A 68 023810

    [8]

    Higgins B L, Berry D W, Bartlett S D, Wiseman H M, Pryde G J 2007 Nature 450 393

    [9]

    Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H, Dowling J P 2010 Phys. Rev. Lett. 104 103602

    [10]

    Seshadreesan K P, Anisimov P M, Lee H, Dowling J P 2011 New J. Phys. 13 083026

    [11]

    Li W F, Du J J, Wen R J, Li G, Zhang T C 2014 J. Appl. Phys. 115 123106

    [12]

    Bollinger J J, Itano W M, Wineland D J, Heinzen D J 1996 Phys. Rev. A 54 R4649

    [13]

    Nagata T, Okamoto R, O'Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [14]

    Gerry C C, Mimih J 2010 Phys. Rev. A 82 013831

    [15]

    Joo J, Munro W J, Spiller T P 2011 Phys. Rev. Lett. 107 083601

    [16]

    Kim T, Ha Y, Shin J, Kim H, Park G, Kim K, Noh T G, Hong C K 1999 Phys. Rev. A 60 708

    [17]

    Gilbert G, Hamrick M, Weinstein Y S 2008 J. Opt. Soc. Am. B 25 1336

    [18]

    Genoni M G, Olivares S, Paris M G A 2011 Phys. Rev. Lett. 106 153603

    [19]

    Genoni M G, Olivares S, Brivio D, Cialdi S, Cipriani D, Santamato A, Vezzoli S, Paris M G A 2012 Phys. Rev. A 85 043817

    [20]

    Datta A, Zhang L J, Thomas-Peter N, Dorner U, Smith B J, Walmsley I A 2011 Phys. Rev. A 83 063836

    [21]

    Xie D, Peng J Y 2013 Sci. China: Phys. Mech. Astron. 56 593

    [22]

    Xin J, Wang H L, Jing J T 2016 Appl. Phys. Lett. 109 051107

    [23]

    Xie D, Chen H F 2017 J. Korean Phys. Soc. 70 1016

    [24]

    Ben-Aryeh Y 2012 J. Opt. Soc. Am. B 29 2754

    [25]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [26]

    Yurke B 1986 Phys. Rev. Lett. 56 1515

    [27]

    Yurke B 1985 Phys. Rev. A 32 311

    [28]

    Ou Z Y 1996 Phys. Rev. Lett. 77 2352

    [29]

    Demkowicz-Dobrzanski R, Banaszek K, Schnabel R 2013 Phys. Rev. A 88 041802

    [30]

    The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962

    [31]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

  • [1] Han Xiao-Xuan, Sun Guang-Zu, Hao Li-Ping, Bai Su-Ying, Jiao Yue-Chun. Sensitivity of RF electric field sensor based on Rydberg AC-Stark effect. Acta Physica Sinica, 2024, 73(9): 093202. doi: 10.7498/aps.73.20240162
    [2] Ding Yong-Jin, Cao Shi-Ying, Lin Bai-Ke, Wang Qiang, Han Yi, Fang Zhan-Jun. Method of adjusting carrier-envelope offset frequency based on electro-optic-crystal Mach-Zehnder interferometer. Acta Physica Sinica, 2022, 71(14): 144203. doi: 10.7498/aps.71.20220147
    [3] Wang Kun, Duan Gao-Yan, Lang Pei-Lin, Zhao Yu-Fang, Liu Jian-Bin, Song Gang. Biosensor based on plasmonic Mach-Zehnder interferometer with metallic gratings. Acta Physica Sinica, 2022, 71(1): 017301. doi: 10.7498/aps.71.20211420
    [4] Biosensor based on plasmonic Mach-Zehnder interferometer with metallic gratings. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211420
    [5] Zhang Wen-Ying, Hu Peng, Xiao You, Li Hao, You Li-Xing. High-efficiency polarization-insensitive superconducting nanowire single photon detector. Acta Physica Sinica, 2021, 70(18): 188501. doi: 10.7498/aps.70.20210486
    [6] Wang Shuai, Sui Yong-Xing, Meng Xiang-Guo. Application of photon-added two-mode squeezed vacuum states to phase estimation based on Mach-Zehnder interferometer. Acta Physica Sinica, 2020, 69(12): 124202. doi: 10.7498/aps.69.20200179
    [7] Li Shao-He, Li Jiu-Sheng, Sun Jian-Zhong. Terahertz frequency coding metasurface. Acta Physica Sinica, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [8] Zuo Xiao-Jie, Sun Ying-Rong, Yan Zhi-Hui, Jia Xiao-Jun. High sensitivity quantum Michelson interferometer. Acta Physica Sinica, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [9] Jia Yue1\2, Chen Xiao-Han1\2, Zhang Hao1\2, Zhang Lin-Jie1\2, Xiao Lian-Tuan1\2, Jia Suo-Tang1\2Noise transfer characteristics of Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [10] Cheng Jian,  Feng Jin-Xia,  Li Yuan-Ji,  Zhang Kuan-Shou. Measurement of low-frequency signal based on quantum-enhanced fiber Mach-Zehnder interferometer. Acta Physica Sinica, 2018, 67(24): 244202. doi: 10.7498/aps.67.20181335
    [11] Yan Zi-Hua, Sun Heng-Xin, Cai Chun-Xiao, Ma Long, Liu Kui, Gao Jiang-Rui. Measurement of audio signal by using low-frequency squeezed light. Acta Physica Sinica, 2017, 66(11): 114205. doi: 10.7498/aps.66.114205
    [12] Yang Shen, Rong Qiang-Zhou, Sun Hao, Zhang Jing, Liang Lei, Xu Qin-Fang, Zhan Su-Chang, Du Yan-Ying, Feng Ding-Yi, Qiao Xue-Guang, Hu Man-Li. High temperature probe sensor with high sensitivity based on Michelson interferometer. Acta Physica Sinica, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [13] Lu Dan-Feng, Qi Zhi-Mei. Characterization and chemical/biosensing application of a high-sensitivity integrated optical polarimetric interferometer. Acta Physica Sinica, 2012, 61(11): 114212. doi: 10.7498/aps.61.114212
    [14] Jin Ai-Jun, Wang Ze-Feng, Hou Jing, Guo Liang, Jiang Zong-Fu, Xiao Rui. Coherence properties of supercontinuum quantified by complex degree of self-coherence. Acta Physica Sinica, 2012, 61(15): 154201. doi: 10.7498/aps.61.154201
    [15] Wang Chang-Hui, Zhao Guo-Hua, Chang Sheng-Jiang. Photonic-crystal-waveguide based Mach-Zehnder interferometer for terahertz switch and modulator. Acta Physica Sinica, 2012, 61(15): 157805. doi: 10.7498/aps.61.157805
    [16] Cai Yuan-Xue, Zhang Yun-Dong, Dang Bo-Shi, Wu Hao, Wang Jin-Fang, Yuan Ping. High sensitivity slow light interferometer based on dispersiveproperty of Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductor materials. Acta Physica Sinica, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [17] Han Kui, Wang Zi-Yu, Shen Xiao-Peng, Wu Qiong-Hua, Tong Xing, Tang Gang, Wu Yu-Xi. Mach-Zehnder interferometer designed based on self-collimating beams and photonic band gap in photonic crystals. Acta Physica Sinica, 2011, 60(4): 044212. doi: 10.7498/aps.60.044212
    [18] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [19] Wang Da-Lin, Sun Jun-Qiang, Wang Jian. High-speed data format conversion from non-return-to-zero to return-to-zero based on periodically poled lithium niobate waveguides. Acta Physica Sinica, 2008, 57(1): 252-259. doi: 10.7498/aps.57.252
    [20] Wang Chen, Wang Wei, Sun Jin-Ren, Fang Zhi-Heng, Wu Jiang, Fu Si-Zu, Ma Wei-Xin, Gu Yuan, Wang Shi-Ji, Zhang Guo-Ping, Zheng Wu-Di, Zhang Tan-Xin, Peng Hui-Min, Shao Ping, Yi Kui, Lin Zun-Qi, Wang Zhan-Shan, Wang Hong-Chang, Zhou Bin, Chen Ling-Yan. Experimental diagnoses of plasma electron density by interferometry using an x-ray laser as probe. Acta Physica Sinica, 2005, 54(1): 202-205. doi: 10.7498/aps.54.202
Metrics
  • Abstract views:  6039
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2018
  • Accepted Date:  08 October 2018
  • Published Online:  05 December 2018

/

返回文章
返回