Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Iterative denoising of ghost imaging based on adaptive threshold method

Zhou Yang Zhang Hong-Wei Zhong Fei Guo Shu-Xu

Citation:

Iterative denoising of ghost imaging based on adaptive threshold method

Zhou Yang, Zhang Hong-Wei, Zhong Fei, Guo Shu-Xu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ghost imaging (GI) is an important technique in the fields of quantum imaging and classical optical imaging, and it can solve the problems which are difficult to solve by the traditional imaging techniques in the optically harsh environments. In this paper, we present the iterative denoising of GI based on an adaptive threshold method. This method is abbreviated as IDGI-AT, which takes the advantages of adaptive threshold, differential, binarization and iterative operation method, and can enhance image quality in GI. In addition, this method can reduce the number of measurements. As is well known, the enormous number of measurements and poor reconstruction quality are obstacles to the engineering application of GI. The correlation noise leads to low signal-to-noise ratio and low imaging efficiency in GI as well. Therefore, we establish a denoising model, which can reduce correlation noise and improve reconstruction quality. We first analyze the iterative denoising of ghost imaging (IDGI) theory, and use the adaptive threshold technique to calculate the ideal threshold associated with the correlation noise. It should be noted that the threshold can be obtained by this method under the condition without requiring prior knowledge of the object. Afterwards, we can construct the correlation noise in this denoising model. In the IDGI, the differential ghost imaging (DGI) image is taken as the initial iteration value. We use the adaptive threshold method, which is different from IDGI, to binarize the initial value of each iteration to make it closer to the original object's transmission coefficient. After three iterations, we can obtain a higher-quality reconstruction image. In order to demonstrate that the IDGI-AT is available, a GI experimental system with a pseudo-thermal light source is set up. The considerable simulation and experimental results show the advantage of our scheme in terms of removing reconstruction image background noise. Especially, the visual effects and peak signal-to-noise ratio values are improved in comparison with those from the traditional GI, DGI and IDGI. Besides, we demonstrate the role of binarization in our scheme. For a binary object, the iterative value binarization can achieve better image quality than that in the case without binarizing the iterative initial value. Therefore, this novel method is likely to provide an alternative mean for GI and further pave the way for the application fields of GI, such as lidar, biomedical engineering, etc.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61627823).
    [1]

    Bertolotti J, van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2012 Nature 491 232

    [2]

    Zhao C, Gong W, Chen M, Li E, Wang H, Xu W, Han S 2012 Appl. Phys. Lett. 101 141123

    [3]

    Zhao S, Wang L, Liang W, Cheng W, Gong L 2015 Opt. Commun. 353 90

    [4]

    Li S, Yao X R, Yu W K, Wu L A, Zhai G J 2013 Opt. Lett. 38 2144

    [5]

    Le M, Wang G, Zheng H, Liu J, Zhou Y, Xu Z 2017 Opt. Express 25 22859

    [6]

    Ren H, Zhao S, Gruska J 2018 Opt. Express 26 550

    [7]

    Brown R H, Twiss R Q 1956 Nature 177 27

    [8]

    Klyshko D N 1988 Sov. Phys. JETP 67 1131

    [9]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429

    [10]

    Bai Y, Han S 2009 J. Mod. Opt. 56 851

    [11]

    Zerom P, Shi Z, O'Sullivan M N, Chan K W C, Krogstad M, Shapiro J H, Boyd R W 2012 Phys. Rev. A 86 063817

    [12]

    Luo K, Huang B, Zheng W, Wu L 2012 Chin. Phys. Lett. 29 074216

    [13]

    Yuan S, Liu X, Zhou X, Li Z, Yang Y 2016 J. Opt. 45 92

    [14]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603

    [15]

    Sun B, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892

    [16]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110

    [17]

    Zhao S, Zhuang P 2014 Chin. Phys. B 23 054203

    [18]

    Huo Y, He H, Chen F 2016 Appl. Opt. 55 3356

    [19]

    Zhang C, Guo S, Cao J, Guan J, Gao F 2014 Opt. Express 22 30063

    [20]

    Gong W 2015 Photon. Res. 3 234

    [21]

    Yao X R, Yu W K, Liu X F, Li L Z, Li M F, Wu L A, Zhai G J 2014 Opt. Express 22 24268

    [22]

    Li G, Yang Z, Zhao Y, Yan R, Liu X, Liu B 2017 Laser Phys. Lett. 14 025207

    [23]

    Li G, Yang Z, Yan R, Zhang A, Wu L A, Qu S 2018 Optik 161 20

    [24]

    Yang C, Wang C, Guan J, Zhang C, Guo S, Gong W, Gao F 2016 Photon. Res. 4 281

  • [1]

    Bertolotti J, van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2012 Nature 491 232

    [2]

    Zhao C, Gong W, Chen M, Li E, Wang H, Xu W, Han S 2012 Appl. Phys. Lett. 101 141123

    [3]

    Zhao S, Wang L, Liang W, Cheng W, Gong L 2015 Opt. Commun. 353 90

    [4]

    Li S, Yao X R, Yu W K, Wu L A, Zhai G J 2013 Opt. Lett. 38 2144

    [5]

    Le M, Wang G, Zheng H, Liu J, Zhou Y, Xu Z 2017 Opt. Express 25 22859

    [6]

    Ren H, Zhao S, Gruska J 2018 Opt. Express 26 550

    [7]

    Brown R H, Twiss R Q 1956 Nature 177 27

    [8]

    Klyshko D N 1988 Sov. Phys. JETP 67 1131

    [9]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429

    [10]

    Bai Y, Han S 2009 J. Mod. Opt. 56 851

    [11]

    Zerom P, Shi Z, O'Sullivan M N, Chan K W C, Krogstad M, Shapiro J H, Boyd R W 2012 Phys. Rev. A 86 063817

    [12]

    Luo K, Huang B, Zheng W, Wu L 2012 Chin. Phys. Lett. 29 074216

    [13]

    Yuan S, Liu X, Zhou X, Li Z, Yang Y 2016 J. Opt. 45 92

    [14]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603

    [15]

    Sun B, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892

    [16]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110

    [17]

    Zhao S, Zhuang P 2014 Chin. Phys. B 23 054203

    [18]

    Huo Y, He H, Chen F 2016 Appl. Opt. 55 3356

    [19]

    Zhang C, Guo S, Cao J, Guan J, Gao F 2014 Opt. Express 22 30063

    [20]

    Gong W 2015 Photon. Res. 3 234

    [21]

    Yao X R, Yu W K, Liu X F, Li L Z, Li M F, Wu L A, Zhai G J 2014 Opt. Express 22 24268

    [22]

    Li G, Yang Z, Zhao Y, Yan R, Liu X, Liu B 2017 Laser Phys. Lett. 14 025207

    [23]

    Li G, Yang Z, Yan R, Zhang A, Wu L A, Qu S 2018 Optik 161 20

    [24]

    Yang C, Wang C, Guan J, Zhang C, Guo S, Gong W, Gao F 2016 Photon. Res. 4 281

  • [1] Chen Ming-Lai, Ma Cai-Wen, Liu Hui, Luo Xiu-Juan, Feng Xu-Bin, Yue Ze-Lin, Zhao Jing. Fast sampling based image reconstruction algorithm for sheared-beam imaging. Acta Physica Sinica, 2024, 73(2): 024202. doi: 10.7498/aps.73.20231254
    [2] Gao Qian-Cheng, He Ze-Hao, Liu Ke-Xuan, Han Chao, Cao Liang-Cai. Adaptive mixed-constraint Gerchberg-Saxton algorithm for phase-only holographic display. Acta Physica Sinica, 2023, 72(2): 024203. doi: 10.7498/aps.72.20221690
    [3] He Zhi-Ye, Zhang Yan-Dong, Tang Chun-Hua, Li Jun-Li, Li Si-Wei, Yu Bin. Analysis of influence of imaging resolution of relay lens on image reconstruction quality in pixel-wise coded exposure imaging technology. Acta Physica Sinica, 2023, 72(2): 024201. doi: 10.7498/aps.72.20221588
    [4] Chen Xing-Yu, Zhou Xin, Bai Xing, Yu Zhan, Wang Yu-Jie, Li Xin-Jia, Liu Yang, Sun Ming-Ze. Equivalence analysis of Fourier ghost imaging and sinusoidal ghost imaging. Acta Physica Sinica, 2023, 72(14): 144202. doi: 10.7498/aps.72.20222317
    [5] Zhang Hai-Peng, Zhao Chang-Zhe, Ju Xiao-Lu, Tang Jie, Xiao Ti-Qiao. Improving quality of crystal diffraction based X-ray ghost imaging through iterative reconstruction algorithm. Acta Physica Sinica, 2022, 71(7): 074201. doi: 10.7498/aps.71.20211978
    [6] Cui An-Jing, Li Dao-Jing, Wu Jiang, Zhou Kai, Gao Jing-Han. Sparse sampling in frequency domain and laser imaging. Acta Physica Sinica, 2022, 71(5): 058705. doi: 10.7498/aps.71.20211408
    [7] Zhang Yu-Yan, Yin Dong-Zhe, Wen Yin-Tang, Luo Xiao-Yuan. Planar array capacitance imaging based on adaptive Kalman filter. Acta Physica Sinica, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [8] Zhang Rui-Xue, Li Hong-Guo, Li Zong-Guo. Temporal imaging based on first-order field correlation. Acta Physica Sinica, 2019, 68(10): 104202. doi: 10.7498/aps.68.20190184
    [9] Li Jing-He, He Zhan-Xiang, Yang Jun, Meng Shu-Jun, Li Wen-Jie, Liao Xiao-Qian. Scale and rotation statistic-based self-adaptive function for ground penetrating radar denoising in curvelet domain. Acta Physica Sinica, 2019, 68(9): 090501. doi: 10.7498/aps.68.20182061
    [10] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [11] Wang Yan, Wang Fei, Wang Ting-Feng, Xie Jing-Jiang. Laser array imaging point cloud registration based on adaptive threshold. Acta Physica Sinica, 2016, 65(24): 249501. doi: 10.7498/aps.65.249501
    [12] Cheng Sheng-Yi, Chen Shan-Qiu, Dong Li-Zhi, Wang Shuai, Yang Ping, Ao Ming-Wu, Xu Bing. Influence of Gaussian function index of deformable mirror on iterative algorithm adaptive optical system. Acta Physica Sinica, 2015, 64(9): 094207. doi: 10.7498/aps.64.094207
    [13] Yu Shu-Hai, Dong Lei, Liu Xin-Yue, Ling Jian-Yong. Analysis on reconstruction of virtual images of Fourier telescopy. Acta Physica Sinica, 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [14] Zhong Ya-Jun, Liu Jiao, Liang Wen-Qiang, Zhao Sheng-Mei. Multiple speckle patterns differential compressive ghost imaging. Acta Physica Sinica, 2015, 64(1): 014202. doi: 10.7498/aps.64.014202
    [15] Cao Bei, Luo Xiu-Juan, Si Qing-Dan, Zeng Zhi-Hong. Four-phase closure algorithm for coherent field imaging. Acta Physica Sinica, 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
    [16] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [17] Zhao Jun-Ying, Jin Ning-De, Gao Zhong-Ke. Detecting unstable periodic orbits from oil-gas-water three-phase slug flows. Acta Physica Sinica, 2013, 62(8): 084701. doi: 10.7498/aps.62.084701
    [18] Liu Xue-Feng, Yao Xu-Ri, Li Ming-Fei, Yu Wen-Kai, Chen Xi-Hao, Sun Zhi-Bin, Wu Ling-An, Zhai Guang-Jie. The role of intensity fluctuations in thermal ghost imaging. Acta Physica Sinica, 2013, 62(18): 184205. doi: 10.7498/aps.62.184205
    [19] Jian Xiao-Hua, Cui Yao-Yao, Xiang Yong-Jia, Han Zhi-Le. Adaptive optics multispectral photoacoustic imaging. Acta Physica Sinica, 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [20] Gao Guo-Rong, Liu Yan-Ping, Pan Qiong. A differentiable thresholding function and an adaptive threshold selection technique for pulsar signal denoising. Acta Physica Sinica, 2012, 61(13): 139701. doi: 10.7498/aps.61.139701
Metrics
  • Abstract views:  5689
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  27 June 2018
  • Accepted Date:  29 August 2018
  • Published Online:  20 December 2019

/

返回文章
返回