Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of phase angle on plasma characteristics in electrically asymmetric capacitive discharge

Hu Yan-Ting Zhang Yu-Ru Song Yuan-Hong Wang You-Nian

Citation:

Effect of phase angle on plasma characteristics in electrically asymmetric capacitive discharge

Hu Yan-Ting, Zhang Yu-Ru, Song Yuan-Hong, Wang You-Nian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In addition to the separate control of the ion energy and ion flux, the so-called electrical asymmetry effect (EAE) also plays an important role in improving the plasma radial uniformity. In this work, a two-dimensional fluid model combined with a full set of Maxwell equations is used to investigate the plasma characteristics in an electrically asymmetric capacitive discharge sustained by multiple consecutive harmonics. The effects of the phase angle θn on the dc self-bias (Vdc) and on the plasma radial uniformity for different numbers of consecutive harmonics k are discussed. The simulation results indicate that the phase angles of different harmonics θn have different influences on the dc self-bias Vdc. For instance, Vdc varies almost linearly with θ1 with a period π in dual frequency discharge, and the period is 2π for other discharge conditions. Besides, the modulation of Vdc becomes less obvious by changing the phase angle of the highest harmonic θk, especially for k>3. In addition, both the axial component of the power density Pz and the radial component of the power density Pr vary with θn, thus the plasma radial uniformity can be adjusted. When the total power density at the radial edge becomes comparable to that in the discharge center, the plasma distribution becomes uniform. For instance, when k=2, the plasma radial uniformity is the best at the phase angle θ1=π/2 and θ2=π. However, for k=3, the best radial uniformity is observed at θ1=3π/2, and the nonuniformity degree α is only 0.41% under this condition. It is worth noting that at k=8, the maximum of α is seven times higher than the minimum by changing the phase angles θ1 and θ2, which means that the plasma radial uniformity can be adjusted effectively. However, the modulation induced by θk(k>3) becomes less obvious, especially for k=8. Indeed, the electron density shows an edge-high profile, and the radial uniformity is always bad for all θ8 investigated. The results obtained in this work can help us to gain an insight into the optimization the plasma process by utilizing the EAE.
      Corresponding author: Zhang Yu-Ru, yrzhang@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11405019, 11675036, 11335004) and the China Postdoctoral Science Foundation (Grant No. 2015T80244).
    [1]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley) pp1-5

    [2]

    Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89

    [3]

    Schulze J, Donko Z, Luggenholscher D, Czarnetzki U 2009 Plasma Sources Sci. Technol. 18 034011

    [4]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506

    [5]

    Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001

    [6]

    Booth J P, Curley G, Maric D, Chabert P 2010 Plasma Sources Sci. Technol. 19 015005

    [7]

    SchulzeJ, Donko Z, Schungel E, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 045007

    [8]

    Donko Z, Schulze J, Hartmann P, Korolov I, Czarnetzki U, Schungel E 2010 Appl. Phys. Lett. 97 081501

    [9]

    Heil B G, Czarnetzki U, Brinkmann R P, Mussenbrock T 2008 J. Phys. D: Appl. Phys. 41 165202

    [10]

    Donko Z, Schulze J, Heil B G, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 025205

    [11]

    Czarnetzki U, Heil B G, Schulze J, Donko Z, Mussenbrock T, Brinkmann R P 2009 J. Phys.: Conf. Ser. 162 012010

    [12]

    Schulze J, Schungel E, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 092005

    [13]

    Schungel E, Mohr S, Schulze J, Czarnetzki U, Kushner M J 2014 Plasma Sources Sci. Technol. 23 015001

    [14]

    SchulzeJ, Schungel E, Czarnetzki U, Gebhardt M, Brinkmann R P, Mussenbrock T 2011 Appl. Phys. Lett. 98 031501

    [15]

    Schulze J, Schungel E, Czarnetzki U, Donko Z 2009 J. Appl. Phys. 106 063307

    [16]

    Schulze J, Schungel E, Donko Z, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 015017

    [17]

    Lafleur T, Delattre P A, Johnson E V, Booth J P 2012 Appl. Phys. Lett. 101 124104

    [18]

    Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308

    [19]

    Schungel E, Zhang Q Z, Iwashita S, Schulze J, Hou L J, Wang Y N, Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 285205

    [20]

    Zhang Q Z, Zhao S X, Jiang W, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 305203

    [21]

    Zhang Y T, Zafar A, Coumou D J, Shannon S C, Kushner M J 2015 J. Phys. D: Appl. Phys. 117 233302

    [22]

    Schungel E, Mohr S, Schulze J, Czarnetzki U 2015 Appl. Phys. Lett. 106 054108

    [23]

    Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055003

    [24]

    Zhang Y R, Xu X, Bogaerts A, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 015202

    [25]

    Zhang Y R, Xu X, Bogaerts A, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 015203

    [26]

    Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B J, Itikawab Y 2008 J. Phys. Chem. Ref. Data 37 913

    [27]

    Tawara H, Itikawa Y, Nishimura H, Yoshino M 1990 J. Phys. Chem. Ref. Data 19 617

    [28]

    Salabas A, Brinkmann R P 2005 Plasma Sources Sci.Technol. 14 S53

    [29]

    Chen Z, Rauf S, Collins K 2010 J. Appl. Phys. 108 073301

    [30]

    Schungel E, Schulze J, Donko Z, Czarnetzki U 2011 Phys. Plasmas 18 013503

  • [1]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley) pp1-5

    [2]

    Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89

    [3]

    Schulze J, Donko Z, Luggenholscher D, Czarnetzki U 2009 Plasma Sources Sci. Technol. 18 034011

    [4]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506

    [5]

    Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001

    [6]

    Booth J P, Curley G, Maric D, Chabert P 2010 Plasma Sources Sci. Technol. 19 015005

    [7]

    SchulzeJ, Donko Z, Schungel E, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 045007

    [8]

    Donko Z, Schulze J, Hartmann P, Korolov I, Czarnetzki U, Schungel E 2010 Appl. Phys. Lett. 97 081501

    [9]

    Heil B G, Czarnetzki U, Brinkmann R P, Mussenbrock T 2008 J. Phys. D: Appl. Phys. 41 165202

    [10]

    Donko Z, Schulze J, Heil B G, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 025205

    [11]

    Czarnetzki U, Heil B G, Schulze J, Donko Z, Mussenbrock T, Brinkmann R P 2009 J. Phys.: Conf. Ser. 162 012010

    [12]

    Schulze J, Schungel E, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 092005

    [13]

    Schungel E, Mohr S, Schulze J, Czarnetzki U, Kushner M J 2014 Plasma Sources Sci. Technol. 23 015001

    [14]

    SchulzeJ, Schungel E, Czarnetzki U, Gebhardt M, Brinkmann R P, Mussenbrock T 2011 Appl. Phys. Lett. 98 031501

    [15]

    Schulze J, Schungel E, Czarnetzki U, Donko Z 2009 J. Appl. Phys. 106 063307

    [16]

    Schulze J, Schungel E, Donko Z, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 015017

    [17]

    Lafleur T, Delattre P A, Johnson E V, Booth J P 2012 Appl. Phys. Lett. 101 124104

    [18]

    Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308

    [19]

    Schungel E, Zhang Q Z, Iwashita S, Schulze J, Hou L J, Wang Y N, Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 285205

    [20]

    Zhang Q Z, Zhao S X, Jiang W, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 305203

    [21]

    Zhang Y T, Zafar A, Coumou D J, Shannon S C, Kushner M J 2015 J. Phys. D: Appl. Phys. 117 233302

    [22]

    Schungel E, Mohr S, Schulze J, Czarnetzki U 2015 Appl. Phys. Lett. 106 054108

    [23]

    Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055003

    [24]

    Zhang Y R, Xu X, Bogaerts A, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 015202

    [25]

    Zhang Y R, Xu X, Bogaerts A, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 015203

    [26]

    Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B J, Itikawab Y 2008 J. Phys. Chem. Ref. Data 37 913

    [27]

    Tawara H, Itikawa Y, Nishimura H, Yoshino M 1990 J. Phys. Chem. Ref. Data 19 617

    [28]

    Salabas A, Brinkmann R P 2005 Plasma Sources Sci.Technol. 14 S53

    [29]

    Chen Z, Rauf S, Collins K 2010 J. Appl. Phys. 108 073301

    [30]

    Schungel E, Schulze J, Donko Z, Czarnetzki U 2011 Phys. Plasmas 18 013503

  • [1] Duan Meng-Yue, Jia Wen-Zhu, Zhang Ying-Ying, Zhang Yi-Fan, Song Yuan-Hong. Two-dimensional fluid simulation of spatial distribution of dust particles in a capacitively coupled silane plasma. Acta Physica Sinica, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [2] Chen Long, Wang Di-Ya, Chen Jun-Yu, Duan Ping, Yang Ye-Hui, Tan Cong-Qi. Characteristics and suppression methods of low-frequency oscillation in Hall thruster. Acta Physica Sinica, 2023, 72(17): 175201. doi: 10.7498/aps.72.20230680
    [3] Song Liu-Qin, Jia Wen-Zhu, Dong Wan, Zhang Yi-Fan, Dai Zhong-Ling, Song Yuan-Hong. Numerical investigation of SiO2 film deposition enhanced by capacitively coupled discharge plasma. Acta Physica Sinica, 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [4] Huang Hua, Li Jiang-Tao, Wang Qian-Nan, Meng Ling-Biao, Qi Wei, Hong Wei, Zhang Zhi-Meng, Zhang Bo, He Shu-Kai, Cui Bo, Wu Yi-Tong, Zhang Hang, Ji Liang-Liang, Zhou Wei-Min, Hu Jian-Bo. Experimental study on the dynamic compression of materials at XGIII facility by laser proton photography. Acta Physica Sinica, 2022, 71(19): 195202. doi: 10.7498/aps.71.20220919
    [5] Cao Li-Yang, Ma Xiao-Ping, Deng Li-Li, Lu Man-Ting, Xin Yu. Axial diagnosis of radio-frequency capacitively coupled Ar/O2 plasma. Acta Physica Sinica, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [6] Wang Li, Wen De-Qi, Tian Chong-Biao, Song Yuan-Hong, Wang You-Nian. Electron heating dynamics and plasma parameters control in capacitively coupled plasma. Acta Physica Sinica, 2021, 70(9): 095214. doi: 10.7498/aps.70.20210473
    [7] Dong Wan, Xu Hai-Wen, Dai Zhong-Ling, Song Yuan-Hong, Wang You-Nian. Gap length effect on discharge mode and etching profiles in asymmetric dual frequency capacitive CF4/Ar discharges. Acta Physica Sinica, 2021, 70(9): 095213. doi: 10.7498/aps.70.20210546
    [8] Zhou Yu, Cao Li-Yang, Ma Xiao-Ping, Deng Li-Li, Xin Yu. Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, 69(8): 085201. doi: 10.7498/aps.69.20191864
    [9] Gao Shu-Han, Wang Xu-Cheng, Zhang Yuan-Tao. Numerical study on discharge characteristics in ultra-high frequency band modulated by pulses with electrodes covered by barriers. Acta Physica Sinica, 2020, 69(11): 115204. doi: 10.7498/aps.69.20191853
    [10] Yang Yu, Tang Cheng-Shuang, Zhao Yi-Fan, Yu Yi-Qing, Xin Yu. Electronegativity of capacitively coupled Ar+O2 plasma excited at very high frequency. Acta Physica Sinica, 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [11] Yang Zheng-Quan, Li Cheng, Lei Yi-An. Magnetohydrodynamic simulation of conical plasma compression. Acta Physica Sinica, 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [12] Wang Jun, Wang Tao, Tang Cheng-Shuang, Xin Yu. Evolution of electron energy distribution function in capacitively coupled argon plasma driven by very high frequency. Acta Physica Sinica, 2016, 65(5): 055203. doi: 10.7498/aps.65.055203
    [13] Hao Ying-Ying, Meng Xiu-Lan, Yao Fu-Bao, Zhao Guo-Ming, Wang Jing, Zhang Lian-Zhu. Simulations of electrical asymmetry effect on N2-H2 capacitively coupled plasma by particle-in-cell/Monte Carlo model. Acta Physica Sinica, 2014, 63(18): 185205. doi: 10.7498/aps.63.185205
    [14] Du Yong-Quan, Liu Wen-Yao, Zhu Ai-Min, Li Xiao-Song, Zhao Tian-Liang, Liu Yong-Xin, Gao Fei, Xu Yong, Wang You-Nian. Phase resolved optical emission spectroscopy of dual frequency capacitively coupled plasma. Acta Physica Sinica, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [15] Hong Bu-Shuang, Yuan Tao, Zou Shuai, Tang Zhong-Hua, Xu Dong-Sheng, Yu Yi-Qing, Wang Xu-Sheng, Xin Yu. Influence of addifion of electronegative gases on the properties of capacitively coupled Ar plasmas. Acta Physica Sinica, 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [16] Zou Shuai, Tang Zhong-Hua, Ji Liang-Liang, Su Xiao-Dong, Xin Yu. Application of floating microwave resonator probe to the measurement of electron density in electronegative capacitively coupled plasma. Acta Physica Sinica, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [17] Jiang Xiang-Zhan, Liu Yong-Xin, Bi Zhen-Hua, Lu Wen-Qi, Wang You-Nian. Radial density uniformity of dual frequency capacitively coupled plasma. Acta Physica Sinica, 2012, 61(1): 015204. doi: 10.7498/aps.61.015204
    [18] Yuan Qiang-Hua, Xin Yu, Huang Xiao-Jiang, Sun Kai, Ning Zhao-Yuan. Effect of 13.56MHz low-frequency power on electrical characteristic of 60MHz radio-frequency capacitively coupled plasma. Acta Physica Sinica, 2008, 57(11): 7038-7043. doi: 10.7498/aps.57.7038
    [19] Song Fa-Lun, Cao Jin-Xiang, Wang Ge. The attenuation of electromagnetic waves by inhomogeneous spherically symmetric plasma. Acta Physica Sinica, 2004, 53(4): 1110-1115. doi: 10.7498/aps.53.1110
    [20] YANG WEI-HONG, HU XI-WEI. MAGNETOHYDRODYNAMICS WAVES IN A NONHOMEG-ENEOUS CURRENT-CARRYING CYLINDRICAL PLASMA. Acta Physica Sinica, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
Metrics
  • Abstract views:  5105
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  22 July 2018
  • Accepted Date:  28 September 2018
  • Published Online:  20 November 2019

/

返回文章
返回