Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rovibrational spectrum calculations of four electronic states in carbon monoxide molecule: Comparison of two effect correction methods

Xu Hui-Ying Liu Yong Li Zhong-Yuan Yang Yu-Jun Yan Bing

Citation:

Rovibrational spectrum calculations of four electronic states in carbon monoxide molecule: Comparison of two effect correction methods

Xu Hui-Ying, Liu Yong, Li Zhong-Yuan, Yang Yu-Jun, Yan Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Accurate calculation of molecular energy is of great significance for studying molecular spectral properties. In this work, the potential energy curve and rovibrational spectrum (Gν) of the ground state X1∑+ and the excited states a3Π, a'3∑+ and A1Π of carbon monoxide molecule are calculated by the multi-reference configuration interaction method. In the calculation, the core-valence correlation correction (CV) effect and scalar relativistic (SR) effect are included.In order to obtain an accurate energy of molecule, two computational schemes are adopted. In the first scheme, i.e. (m MRCI+Q/CBS(TQ5)+CV+SR), the molecular orbital wavefunction is obtained from the Hartree-Fock self-consistent field method by using the basis set aug-cc-pVnZ. The wavefunction is first calculated by the state-averaged complete active space self-consistent field approach. Then the multi-reference configuration interaction method (MRCI) is adopted to calculate the dynamic correlation energy in the potential energy curve. Finally, we use the basis set cc-pCVQZ and aug-cc-pVQZ to calculate the CV effect and SR effect by the MRCI method. In the second scheme (aug-cc-pwCVnZ-DK (n=T, Q, 5)), the potential energy curves (PECs) of these four electronic states are calculated by the MRCI method whose basis set (aug-cc-pwCVnZ-DK) contains the CV effect and SR effect. Finally, in order to reduce the error caused by the basis set, we extrapolate the basis sets of the two computational schemes to the complete basis set. On the basis of the PECs plotted by the different methods, we obtain the spectroscopic parameters of the X1∑+, a3Π, a'3∑+ and A1Π states of the carbon monoxide by solving the internuclear Schrödinger equations through utilizing the numerical integration program “LEVEL”.In this paper, we calculate the SR effect and the CV effect by using different schemes, and the latter is indispensable for accurately calculating the molecular structure. For the lowest two electronic states, we consider the dependence of the two effects on the calculation of the Gaussian basis group (Method B), and find that the accuracy of the rovibrational spectrum is improved. It can be seen that these electronic states have higher requirements for electronic correlation calculation. For higher electronic states, the electron cloud distribution is relatively loose, and the electronic correlation obtained by a single Gaussian basis group can achieve the corresponding calculation accuracy. Of course, since the calculation of the rovibrational spectra is essentially only the relative energy, the offset effect of the electronic correlation effect of different electronic states is also included here in this paper.
      Corresponding author: Yang Yu-Jun, yangyj@jlu.edu.cn;yanbing@jlu.edu.cn ; Yan Bing, yangyj@jlu.edu.cn;yanbing@jlu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0403300), the National Natural Science Foundation of China (Grant Nos. 11874177, 11774129, 11627807, 11574114), and the Natural Science Foundation of Jilin Province, China (Grant No. 20170101153JC).
    [1]

    Jong W A D, Harrison R J, Dixon D A 2001 J. Phys. Chem. 114 48

    [2]

    Peterson K A, Dunning Jr T H 2002 J. Phys. Chem. 117 10548

    [3]

    Abbiche K, Marakchi K, Komiha N, Francisco J S, Linguerri R, Hochlaf M 2014 Mol. Phys. 112 2633

    [4]

    Li R, Zhai Z, Zhang X M, Jin M X, Xu H F, Yan B 2015 J Quant. Spectrosc. Radiat. Transfer 157 42

    [5]

    Brion H, Moser C 1960 J. Phys. Chem. 32 1194

    [6]

    Clementi E 1963 J. Phys. Chem. 38 2248

    [7]

    Fraga S, Ransil B J 1962 J. Phys. Chem. 36 1127

    [8]

    Green S 1970 J. Phys. Chem. 52 3100

    [9]

    Grimaldi F, Lecourt A, Moser C 1967 Int. J. Quantum Chem. 1 153

    [10]

    Huo W M 1965 J. Phys. Chem. 43 624

    [11]

    Huo W M 1966 J. Phys. Chem. 45 1554

    [12]

    Hurley A C 1960 Rev. Mod. Phys. 32 400

    [13]

    Lefebvre B H, Moser C, Nesbet R K 1961 J. Phys. Chem. 34 1950

    [14]

    Lefebvre B H, Moser C, Nesbet R K 1961 J. Phys. Chem. 35 1702

    [15]

    Lefebvre B H, Moser C, Nesbet R K 1964 J. Mol. Spectrosc. 13 418

    [16]

    Merryman P, Moser C M, Nesbet R K 1960 J. Phys. Chem. 32 631

    [17]

    Nesbet R 1964 J. Phys. Chem. 40 3619

    [18]

    Nesbet R 1965 J. Phys. Chem. 43 4403

    [19]

    O'Neil S V, Schaefer Ⅲ H F 1970 J. Phys. Chem. 53 3994

    [20]

    Ransil B J 1960 Rev. Mod. Phys. 32 245

    [21]

    Siu A K Q, Davidson E R 1970 Int. J. Quantum. Chem. 4 223

    [22]

    Lu P F, Yan L, Yu Z Y, Gao Y F, Gao T 2013 Commun. Theor. Phys. 59 193

    [23]

    Shi D H, Li W T, Sun J F, Zhu Z L 2013 Int. J. Quantum. Chem. 113 934

    [24]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schtz M 2012 Wiley. Interdiscip. Rev. Comput. Mol. Sci. 2 242

    [25]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [26]

    Werner H J, Knowles P J 1985 J. Phys. Chem. 82 5053

    [27]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [28]

    Werner H J, Knowles P J 1988 J. Phys. Chem. 89 5803

    [29]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [30]

    Dunning Jr T H 1989 J. Phys. Chem. 90 1007

    [31]

    Woon D E, Dunning Jr T H 1993 J. Phys. Chem. 98 1358

    [32]

    Douglas M, Kroll N M 1974 Ann. Phys. 82 89

    [33]

    Hess B A 1986 Phys. Rev. A. 33 3742

    [34]

    Le Roy R J 2002 LEVEL75: A Computer Program for Solving the Radial Schrö dinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-665

    [35]

    Coxon J A, Hajigeorgiou P G 2004 J. Phys. Chem. 121 2992

    [36]

    Krupenie P H, Weissman S 1965 J. Phys. Chem. 43 1529

  • [1]

    Jong W A D, Harrison R J, Dixon D A 2001 J. Phys. Chem. 114 48

    [2]

    Peterson K A, Dunning Jr T H 2002 J. Phys. Chem. 117 10548

    [3]

    Abbiche K, Marakchi K, Komiha N, Francisco J S, Linguerri R, Hochlaf M 2014 Mol. Phys. 112 2633

    [4]

    Li R, Zhai Z, Zhang X M, Jin M X, Xu H F, Yan B 2015 J Quant. Spectrosc. Radiat. Transfer 157 42

    [5]

    Brion H, Moser C 1960 J. Phys. Chem. 32 1194

    [6]

    Clementi E 1963 J. Phys. Chem. 38 2248

    [7]

    Fraga S, Ransil B J 1962 J. Phys. Chem. 36 1127

    [8]

    Green S 1970 J. Phys. Chem. 52 3100

    [9]

    Grimaldi F, Lecourt A, Moser C 1967 Int. J. Quantum Chem. 1 153

    [10]

    Huo W M 1965 J. Phys. Chem. 43 624

    [11]

    Huo W M 1966 J. Phys. Chem. 45 1554

    [12]

    Hurley A C 1960 Rev. Mod. Phys. 32 400

    [13]

    Lefebvre B H, Moser C, Nesbet R K 1961 J. Phys. Chem. 34 1950

    [14]

    Lefebvre B H, Moser C, Nesbet R K 1961 J. Phys. Chem. 35 1702

    [15]

    Lefebvre B H, Moser C, Nesbet R K 1964 J. Mol. Spectrosc. 13 418

    [16]

    Merryman P, Moser C M, Nesbet R K 1960 J. Phys. Chem. 32 631

    [17]

    Nesbet R 1964 J. Phys. Chem. 40 3619

    [18]

    Nesbet R 1965 J. Phys. Chem. 43 4403

    [19]

    O'Neil S V, Schaefer Ⅲ H F 1970 J. Phys. Chem. 53 3994

    [20]

    Ransil B J 1960 Rev. Mod. Phys. 32 245

    [21]

    Siu A K Q, Davidson E R 1970 Int. J. Quantum. Chem. 4 223

    [22]

    Lu P F, Yan L, Yu Z Y, Gao Y F, Gao T 2013 Commun. Theor. Phys. 59 193

    [23]

    Shi D H, Li W T, Sun J F, Zhu Z L 2013 Int. J. Quantum. Chem. 113 934

    [24]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schtz M 2012 Wiley. Interdiscip. Rev. Comput. Mol. Sci. 2 242

    [25]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [26]

    Werner H J, Knowles P J 1985 J. Phys. Chem. 82 5053

    [27]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [28]

    Werner H J, Knowles P J 1988 J. Phys. Chem. 89 5803

    [29]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [30]

    Dunning Jr T H 1989 J. Phys. Chem. 90 1007

    [31]

    Woon D E, Dunning Jr T H 1993 J. Phys. Chem. 98 1358

    [32]

    Douglas M, Kroll N M 1974 Ann. Phys. 82 89

    [33]

    Hess B A 1986 Phys. Rev. A. 33 3742

    [34]

    Le Roy R J 2002 LEVEL75: A Computer Program for Solving the Radial Schrö dinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-665

    [35]

    Coxon J A, Hajigeorgiou P G 2004 J. Phys. Chem. 121 2992

    [36]

    Krupenie P H, Weissman S 1965 J. Phys. Chem. 43 1529

  • [1] Feng Jia-Feng, Wei Hong-Xiang, Yu Guo-Qiang, Huang Hui, Guo Jing-Hong, Han Xiu-Feng. Exchange bias effect of current Joule thermally modulated inverted vertical (Co/Pt) n/Co/IrMn nanomultilayers. Acta Physica Sinica, 2023, 72(1): 018501. doi: 10.7498/aps.72.20221584
    [2] Wei Chang-Li, Liang Gui-Ying, Liu Xiao-Ting, Yan Pei-Yuan, Yan Bing. Calculations on rovibrational spectra of two lowest electronic states in sulfur monoxide molecule by explicitly correlated approach. Acta Physica Sinica, 2016, 65(16): 163101. doi: 10.7498/aps.65.163101
    [3] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Simulation of Z-pinch Al plasma radiation and correction with considering superposition effect. Acta Physica Sinica, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [4] Zhu Hong-Qiang, Feng Qing. Microscopic characteristics mechanism of optical gas sensing material rutile titanium dioxide (110) surface adsorption of CO molecules. Acta Physica Sinica, 2014, 63(13): 133101. doi: 10.7498/aps.63.133101
    [5] Jiang Yong-Hong, Sun Wei-Guo, Zhang Yi, Fu Jia, Fan Qun-Chao, Li Hui-Dong, Feng Hao. Study on P-branch emission spectral lines of AuO molecule using improved analytical formula. Acta Physica Sinica, 2013, 62(21): 213301. doi: 10.7498/aps.62.213301
    [6] Liu Cheng, Bai Wen-Guang, Zhang Peng, Sun You-Wen, Si Fu-Qi. The inverse method of carbon monoxide from satellite measurement and the result analysis. Acta Physica Sinica, 2013, 62(3): 030704. doi: 10.7498/aps.62.030704
    [7] Guo Qi-Yun, Peng Wen-Yi, Yan Ming-Ming, Guo Feng-Li. Microstructure and magnetic-field-induced strain in Mn70Fe30-xCox (x=0,2,4) alloys. Acta Physica Sinica, 2013, 62(15): 157502. doi: 10.7498/aps.62.157502
    [8] Li Tian-Jing, Li Gong-Ping, Ma Jun-Ping, Gao Xing-Xin. Effect of Co+ implantation on structural and optical properties in single-crystal TiO2. Acta Physica Sinica, 2011, 60(11): 116102. doi: 10.7498/aps.60.116102
    [9] Zhang Jian-Dong, Yang Chun, Chen Yuan-Tao, Zhang Bian-Xia, Shao Wen-Ying. A density functional theory study of absorption behavior of CO on Au-doped single-walled carbon nanotubes. Acta Physica Sinica, 2011, 60(10): 106102. doi: 10.7498/aps.60.106102
    [10] Fan Qun-Chao, Sun Wei-Guo, Li Hui-Dong, Feng Hao. P-branch spectral lines of rovibrational transitions of CO molecule in ground state. Acta Physica Sinica, 2011, 60(6): 063301. doi: 10.7498/aps.60.063301
    [11] Wu Ding-Cai, Hu Zhi-Gang, Duan Man-Yi, Xu Lu-Xiang, Liu Fang-Shu, Dong Cheng-Jun, Wu Yan-Nan, Ji Hong-Xuan, Xu Ming. Synthesis and photoluminescence of (Co, Cu)-doped ZnO thin films. Acta Physica Sinica, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [12] Fan Qun-Chao, Sun Wei-Guo, Qu Shuang-Shuang. Accurate studies on rovibrational energies of the electronic state B1Σ of HF molecule using an algebraic approach. Acta Physica Sinica, 2008, 57(7): 4110-4118. doi: 10.7498/aps.57.4110
    [13] Luo Wen-Hua, Meng Da-Qiao, Li Gan, Chen Hu-Chi. Density functional study of CO adsorption on Pu (100) surface. Acta Physica Sinica, 2008, 57(1): 160-164. doi: 10.7498/aps.57.160
    [14] Xu Shao-Yan, Lu Bo-Qiao, Zheng Ya-Ru, Sun Yan. Experimental study on thermopower of transition metals Fe,Co and Ni in the vicinity of Curie temperatures. Acta Physica Sinica, 2006, 55(5): 2529-2533. doi: 10.7498/aps.55.2529
    [15] Zheng Wu, Wang Ai-Ling, Jiang Hong-Wei, Zhou Yun-Song, Li Tong. Magnetic properties of Co-Pt-C grain films. Acta Physica Sinica, 2004, 53(8): 2761-2765. doi: 10.7498/aps.53.2761
    [16] Guo Hong-Yong, Liu Bao-Dan, Tang Ning, Luo Hong-Zhi, Li Yang-Xian, Yang Fu-Ming, Wu Guang-Heng. The effect of Co substitution and stabilizing element on the structure and magnetic properties of Nd3(Fe,Co,M)29(M=Ti,V,Cr) compounds. Acta Physica Sinica, 2004, 53(1): 189-193. doi: 10.7498/aps.53.189
    [17] BAI GUI-RU, XU CHANG-QING. A THEORETIC EXPLANATION OF ELECTRIC HELD EFFECT OF EPR SPECTRA OF SrCl2:Co++. Acta Physica Sinica, 1988, 37(1): 136-140. doi: 10.7498/aps.37.136
    [18] LI HONG-CHENG, WANG RUI-LAN, WANG PING-SHU, GUAN WEI-YAN. A METHOD OF TEMPERATURE CORRECTION FOR ELECTRON TUNNELING SPECTRUM. Acta Physica Sinica, 1986, 35(3): 393-396. doi: 10.7498/aps.35.393
    [19] Zhang Bao-shu, Huang Rui-ping, Liu Hui-fang, Shen Hui-hua, Shen Zhi-ye, Zhang Cun-hao. TUNABLE DIODE LASER SPECTROSCOPY OF CO2 IN THE 3657-3708 cm-1 REGION. Acta Physica Sinica, 1982, 31(10): 1354-1361. doi: 10.7498/aps.31.1354
    [20] QING CHENG-RUI, HE ZUO-XIU. A DISCUSSION OF THE ATOMIC EFFECT IN THE β-DECAY OF 3H AND THE NEUTRINO MASS. Acta Physica Sinica, 1982, 31(5): 654-659. doi: 10.7498/aps.31.654
Metrics
  • Abstract views:  4632
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  01 August 2018
  • Accepted Date:  29 August 2018
  • Published Online:  05 November 2018

/

返回文章
返回