Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultralow-voltage albumen-gated electric-double-layer thin film transistors

Liang Ding-Kang Chen Yi-Hao Xu Wei Ji Xin-Cun Tong Yi Wu Guo-Dong

Citation:

Ultralow-voltage albumen-gated electric-double-layer thin film transistors

Liang Ding-Kang, Chen Yi-Hao, Xu Wei, Ji Xin-Cun, Tong Yi, Wu Guo-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, environment-friendly and biocompatible electronics have received extensive attention. As a kind of natural biological material with rich sources, proteins have been widely used in electronic devices. In this work, electric-double-layer (EDL) thin-film transistors (TFTs) gated by natural chicken albumen are fabricated at room temperature. The indium-tin-oxide (ITO) conductive glass is employed as a substrate. The spin coated chicken albumen film is used as the gate dielectric. The indium-zinc-oxide (IZO) is sputtered on an albumen-coated ITO glass as the channel and the source/drain electrodes with only one shadow mask. The capacitance-frequency measurements demonstrate an ultra-large specific capacitance of the albumen film at low frequencies. For the physical understanding of the capacitive coupling within the albumen film, the phase angle is characterized as a function of frequency. The results indicate that such an ultra-large capacitive coupling can be attributed to the proton migration under the electric field, which results in the EDL effect at the interface of the albumen film. By DC sweep measurements, a low leakage current is observed (<3.0 nA at Vgs=1.5 V), which indicates a good isolation of the albumen-based dielectric. By transfer and output measurements, an ultralow operation voltage of 1.5 V, a high field-effect mobility of 38.01 cm2/(V·s), a low subthreshold swing of 164 mV/decade, and a large on-off ratio of 2.4×106 are obtained for such albumen-gated TFTs. The ultra-large EDL capacitive coupling is responsible for such good electrical characteristics. The dynamic bias stress stability of the albumen-gated TFTs is also investigated. The device exhibits a good reproducibility in response to the repeatedly pulsed gate voltage. A maintainable on-to-off ratio (>106) and no obvious current loss are observed, which suggests that neither chemical doping nor chemical reaction occurs at the albumen-based dielectric/IZO channel interface when the gate potential is biased. After being aged one day in air ambient without surface passivation, the albumen-gated TFTs show a good stability of the electrical properties. Such ultralow-voltage EDL-TFTs gated by albumen electrolyte will be useful for the bioelectronic and low-energy portable electronic products. And our results will also have potential applications in biocompatible artificial neuron networks and brain-inspired neuromorphic systems.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61704088, 51602311), the Nanjing University of Posts and Telecommunications Foundation, China (Grant No. NY217116), the National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, China (Grant No. KFJJ20170101), and the Natural Science Foundation of Anhui Province, China (Grant No. 11708085MF148).
    [1]

    Siegel A C, Phillips S T, Wiley B J, Whitesides G M 2009 Lab Chip 9 2775

    [2]

    Martins R, Barquinha P, Pereira L, Correia N, Goncalo G, Ferreira I, Fortunato E 2008 Appl. Phys. Lett. 93 203501

    [3]

    Ordinario D D, Phan L, Walkup W G, Jocson J M, Karshalev E, Hüsken N, Gorodetsky A A 2014 Nat. Chem. 6 596

    [4]

    Ratner B D, Bryant S J 2004 Annu. Rev. Biomed. Eng. 6 41

    [5]

    Willner I 2002 Science 298 2407

    [6]

    Yu X, Shou W, Mahajan B K, Huang X, Pan H 2018 Adv. Mater. 30 28

    [7]

    Irimia-Vladu M, Sariciftci N S, Bauer S 2011 J. Mater. Chem. 21 1350

    [8]

    Kim D H, Kim Y S, Amsden J, Panilaitis B, Kaplan D L, Omenetto F G, Zakin M R, Rogers J A 2009 Appl. Phys. Lett. 95 133701

    [9]

    Hu W, Jiang J, Xie D D, Wang S T, Bi K, Duan H, Yang J, He J 2018 Nanoscale 10 14893

    [10]

    Wu J, Lin L Y 2015 Adv. Opt. Mater. 3 1530

    [11]

    Wang L, Jackman J A, Tan E L, Park J H, Potroz M G, Hwang E T, Cho N J 2017 Nano Energy 36 38

    [12]

    Jin J, Lee D, Im H G, Han Y C, Jeong E G, Rolandi M, Choi K C, Bae B S 2016 Adv. Mater. 28 5169

    [13]

    Street R A 2009 Adv. Mater. 21 2007

    [14]

    Fortunato E M C, Barquinha P M C, Pimentel A C M B G, Gonc A M F, Marques A J S, Pereira L M N, Martins R F P 2005 Adv. Mater. 17 590

    [15]

    Lu Y J, Fujii M, Kanai H 1998 Int. J. Food Sci. Technol. 33 393

    [16]

    Xie D D, Jiang J, Hu W N, He Y L, Yang J L, He J, Gao Y L, Wan Q 2018 ACS Appl. Mater. Interfaces 10 25943

    [17]

    Darvishi H, Khoshtaghaza M, Zarein M, Azadbakht M 2012 Agric. Eng. Int.: CIGR Journal 14 224

    [18]

    Sela M, Lifson S 1959 Biochim. Biophys. Acta 36 471

    [19]

    Chang J W, Wang C G, Huang C Y, Tsai T D, Guo T F, Wen T C 2011 Adv. Mater. 23 4077

    [20]

    Mine Y 1995 Trends Food Sci. Tech. 6 225

    [21]

    Ma C, Holme J 1982 J. Food Sci. 47 1454

    [22]

    Zhong C, Deng Y, Roudsari A F, Kapetanovic A, Anantram M P, Rolandi M 2011 Nat. Commun. 2 476

    [23]

    Jiang J, Sun J, Lu A, Wan Q 2011 IEEE Electron Device Lett. 58 547

    [24]

    Cho J H, Lee J, Xia Y, Kim B, He Y, Renn M J, Lodge T P, Frisbie C D 2008 Nat. Mater. 7 900

    [25]

    Lee J, Panzer M J, He Y, Lodge T P, Frisbie C D 2007 J. Am. Chem. Soc. 129 4532

  • [1]

    Siegel A C, Phillips S T, Wiley B J, Whitesides G M 2009 Lab Chip 9 2775

    [2]

    Martins R, Barquinha P, Pereira L, Correia N, Goncalo G, Ferreira I, Fortunato E 2008 Appl. Phys. Lett. 93 203501

    [3]

    Ordinario D D, Phan L, Walkup W G, Jocson J M, Karshalev E, Hüsken N, Gorodetsky A A 2014 Nat. Chem. 6 596

    [4]

    Ratner B D, Bryant S J 2004 Annu. Rev. Biomed. Eng. 6 41

    [5]

    Willner I 2002 Science 298 2407

    [6]

    Yu X, Shou W, Mahajan B K, Huang X, Pan H 2018 Adv. Mater. 30 28

    [7]

    Irimia-Vladu M, Sariciftci N S, Bauer S 2011 J. Mater. Chem. 21 1350

    [8]

    Kim D H, Kim Y S, Amsden J, Panilaitis B, Kaplan D L, Omenetto F G, Zakin M R, Rogers J A 2009 Appl. Phys. Lett. 95 133701

    [9]

    Hu W, Jiang J, Xie D D, Wang S T, Bi K, Duan H, Yang J, He J 2018 Nanoscale 10 14893

    [10]

    Wu J, Lin L Y 2015 Adv. Opt. Mater. 3 1530

    [11]

    Wang L, Jackman J A, Tan E L, Park J H, Potroz M G, Hwang E T, Cho N J 2017 Nano Energy 36 38

    [12]

    Jin J, Lee D, Im H G, Han Y C, Jeong E G, Rolandi M, Choi K C, Bae B S 2016 Adv. Mater. 28 5169

    [13]

    Street R A 2009 Adv. Mater. 21 2007

    [14]

    Fortunato E M C, Barquinha P M C, Pimentel A C M B G, Gonc A M F, Marques A J S, Pereira L M N, Martins R F P 2005 Adv. Mater. 17 590

    [15]

    Lu Y J, Fujii M, Kanai H 1998 Int. J. Food Sci. Technol. 33 393

    [16]

    Xie D D, Jiang J, Hu W N, He Y L, Yang J L, He J, Gao Y L, Wan Q 2018 ACS Appl. Mater. Interfaces 10 25943

    [17]

    Darvishi H, Khoshtaghaza M, Zarein M, Azadbakht M 2012 Agric. Eng. Int.: CIGR Journal 14 224

    [18]

    Sela M, Lifson S 1959 Biochim. Biophys. Acta 36 471

    [19]

    Chang J W, Wang C G, Huang C Y, Tsai T D, Guo T F, Wen T C 2011 Adv. Mater. 23 4077

    [20]

    Mine Y 1995 Trends Food Sci. Tech. 6 225

    [21]

    Ma C, Holme J 1982 J. Food Sci. 47 1454

    [22]

    Zhong C, Deng Y, Roudsari A F, Kapetanovic A, Anantram M P, Rolandi M 2011 Nat. Commun. 2 476

    [23]

    Jiang J, Sun J, Lu A, Wan Q 2011 IEEE Electron Device Lett. 58 547

    [24]

    Cho J H, Lee J, Xia Y, Kim B, He Y, Renn M J, Lodge T P, Frisbie C D 2008 Nat. Mater. 7 900

    [25]

    Lee J, Panzer M J, He Y, Lodge T P, Frisbie C D 2007 J. Am. Chem. Soc. 129 4532

  • [1] Wang Chen, Wen Pan, Peng Cong, Xu Meng, Chen Long-Long, Li Xi-Feng, Zhang Jian-Hua. Effect of passivation layer on back channel etching InGaZnO thin film transistors. Acta Physica Sinica, 2023, 72(8): 087302. doi: 10.7498/aps.72.20222272
    [2] Liu Xian-Zhe, Zhang Xu, Tao Hong, Huang Jian-Lang, Huang Jiang-Xia, Chen Yi-Tao, Yuan Wei-Jian, Yao Ri-Hui, Ning Hong-Long, Peng Jun-Biao. Research progress of tin oxide-based thin films and thin-film transistors prepared by sol-gel method. Acta Physica Sinica, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [3] Shao Yan, Ding Shi-Jin. Effects of hydrogen impurities on performances and electrical reliabilities of indium-gallium-zinc oxide thin film transistors. Acta Physica Sinica, 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [4] Qin Ting, Huang Sheng-Xiang, Liao Cong-Wei, Yu Tian-Bao, Luo Heng, Liu Sheng, Deng Lian-Wen. Floating gate effect in amorphous InGaZnO thin-film transistor. Acta Physica Sinica, 2018, 67(4): 047302. doi: 10.7498/aps.67.20172325
    [5] Liu Yuan, He Hong-Yu, Chen Rong-Sheng, Li Bin, En Yun-Fei, Chen Yi-Qiang. Low-frequency noise in hydrogenated amorphous silicon thin film transistor. Acta Physica Sinica, 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [6] Lan Lin-Feng, Zhang Peng, Peng Jun-Biao. Research progress on oxide-based thin film transisitors. Acta Physica Sinica, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [7] Wang Jing, Liu Yuan, Liu Yu-Rong, Wu Wei-Jing, Luo Xin-Yue, Liu Kai, Li Bin, En Yun-Fei. Extraction of density of localized states in indium zinc oxide thin film transistor. Acta Physica Sinica, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [8] Ning Hong-Long, Hu Shi-Ben, Zhu Feng, Yao Ri-Hui, Xu Miao, Zou Jian-Hua, Tao Hong, Xu Rui-Xia, Xu Hua, Wang Lei, Lan Lin-Feng, Peng Jun-Biao. Improved performance of the amorphous indium-gallium-zinc oxide thin film transistor with Cu-Mo source/drain electrode. Acta Physica Sinica, 2015, 64(12): 126103. doi: 10.7498/aps.64.126103
    [9] Zhu Le-Yong, Gao Ya-Na, Zhang Jian-Hua, Li Xi-Feng. High mobility thin-film transistor with solution-processed hafnium-oxide dielectric and zinc-indium-tin-oxide semiconductor. Acta Physica Sinica, 2015, 64(16): 168501. doi: 10.7498/aps.64.168501
    [10] Guo Wen-Hao, Xiao Hui, Men Chuan-Ling. Effects of protons within SiO2 solid-state electrolyte on performances of oxide electric-double-layer thin film transistor. Acta Physica Sinica, 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [11] Xu Hua, Lan Lin-Feng, Li Min, Luo Dong-Xiang, Xiao Peng, Lin Zhen-Guo, Ning Hong-Long, Peng Jun-Biao. Effect of source/drain preparation on the performance of oxide thin-film transistors. Acta Physica Sinica, 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [12] Gao Ya-Na, Li Xi-Feng, Zhang Jian-Hua. Solution-processed high performance HIZO thin film transistor with AZO gate dielectric. Acta Physica Sinica, 2014, 63(11): 118502. doi: 10.7498/aps.63.118502
    [13] Zhang Geng-Ming, Guo Li-Qiang, Zhao Kong-Sheng, Yan Zhong-Hui. Effect of oxygen on stability performance of the IZO junctionless thin film transistors. Acta Physica Sinica, 2013, 62(13): 137201. doi: 10.7498/aps.62.137201
    [14] Li Xi-Feng, Xin En-Long, Shi Ji-Feng, Chen Long-Long, Li Chun-Ya, Zhang Jian-Hua. Stability of low temperature and transparent amorphous InGaZnO thin film transistor under illumination. Acta Physica Sinica, 2013, 62(10): 108503. doi: 10.7498/aps.62.108503
    [15] Wu Ping, Zhang Jie, Li Xi-Feng, Chen Ling-Xiang, Wang Lei, Lü Jian-Guo. Ultraviolet photoresponse of ZnO thin-film transistor fabricated at room temperature. Acta Physica Sinica, 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [16] Chen Xiao-Xue, Yao Ruo-He. DC characteristic research based on surface potential for a-Si:H thin-film transistor. Acta Physica Sinica, 2012, 61(23): 237104. doi: 10.7498/aps.61.237104
    [17] Zhao Kong-Sheng, Xuan Rui-Jie, Han Xiao, Zhang Geng-Ming. Junctionless low-voltage thin-film transistors based on indium-tin-oxide. Acta Physica Sinica, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [18] Qiang Lei, Yao Ruo-He. Distributions of the threshold voltage and the temperature in the channel of amorphous silicon thin film transistors. Acta Physica Sinica, 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [19] Wang Xiong, Cai Xi-Kun, Yuan Zi-Jian, Zhu Xia-Ming, Qiu Dong-Jiang, Wu Hui-Zhen. Study of zinc tin oxide thin-film transistor. Acta Physica Sinica, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [20] Xu Tian-Ning, Wu Hui-Zhen, Zhang Ying-Ying, Wang Xiong, Zhu Xia-Ming, Yuan Zi-Jian. Fabrication and performance of indium oxide based transparent thin film transistors. Acta Physica Sinica, 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
Metrics
  • Abstract views:  5238
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  15 August 2018
  • Accepted Date:  15 September 2018
  • Published Online:  05 December 2018

/

返回文章
返回