Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic and magnetocaloric effects of Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) compounds

Hao Zhi-Hong Wang Hai-Ying Zhang Quan Mo Zhao-Jun

Citation:

Magnetic and magnetocaloric effects of Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) compounds

Hao Zhi-Hong, Wang Hai-Ying, Zhang Quan, Mo Zhao-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • EuTiO3 is a direct band-gap semiconductor material and exhibits antiferromagnetism with large magnetic entropy change around the liquid helium temperature. The ferromagnetic state can be changed into antiferromagnetic state through lattice constant change and electron doping by element substitution due to strong spin-lattice coupling coexistence of ferromagnetic coupling, and antiferromagnetic coupling. The values of magnetic entropy change can be effectively improved under low magnetic field change after changing into ferromagnetism. Samples of EuTiO3 and Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) are prepared by the sol gel method. The Eu0.9Ca0.1TiO3 exhibits the antiferromagnetism due to similar ion radius. The ferromagnetic coupling between Eu0.9Sr0.1TiO3 and Eu0.9Ba0.1TiO3 is enhanced, for alkaline earth metal (Sr and Ba) has larger ion radius, which is beneficial to improving the magnetocaloric effect under low magnetic field. Electron doping can inhibit the antiferromagnetic coupling because the extra carrier may occupy the Ti 3d and reduce the hybridization of Eu 4f-Ti 3d-Eu 4f. When the electron doping concentration is greater than 10%, the spin polarization rate of Ti 3d state on the Fermi surface is negative, resulting in the transition from antiferromagnetic to ferromagnetic state. When the Eu ions are replaced with the Sm ions (Sm ion radius is similar to Eu ion radius), the ferromagnetic coupling is enhanced. However, when the Eu ions are replaced with the La or Ce ions, the samples show strong ferromagnetism, for the lattice constant and electron doping are increased. A giant reversible magnetocaloric effect and large refrigerant capacity for each of Eu0.9M0.1TiO3 (M=Sr, Ba, La, Ce) compounds are observed. Under the magnetic field change of 1 T, the values of maximum magnetic entropy change and refrigeration capacity are 9.8 J/(kg·K) and 36.6 J/kg for Eu0.9Sr0.1TiO3, and 10 J/(kg·K) and 45.1 J/kg for Eu0.9Ba0.1TiO3. The values of maximum magnetic entropy change of Eu0.9La0.1TiO3 and Eu0.9Ce0.1TiO3 are 10.8 J/(kg·K) and 11 J/(kg·K), respectively, which are larger than that of EuTiO3 (9.8 J/(kg·K)). The values of refrigeration capacity are 39.3 J/kg and 51.8 J/kg, which are also improved compared with those of EuTiO3. In a word, the results suggest that these compounds could be considered as good candidates for low-temperature and low-field magnetic refrigerant.
    [1]

    Benford S M, Brown G V 1981 J. Appl. Phys. 52 2110

    [2]

    Shen B G, Sun J R, Hu F X, Zhang H W, Chen Z H 2009 Materials. Adv. Mater. 21 4545

    [3]

    Tegus O, Bruck E, Buschow K H, DeBoer F R 2002 Nature 415 150

    [4]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401

    [5]

    Gupta S B, Suresh K G 2013 Appl. Phys. Lett. 102 022408

    [6]

    Mo Z J, Shen J, Yan LQ, Wu J F, Wang L C, Tang C C, Shen B G 2013 Appl. Phys. Lett. 102 192407

    [7]

    Chen J, Shen B G, Dong Q Y, Sun J R 2010 Solid State Commun. 150 1429

    [8]

    Li L W, Saensunon B, Hutchison W D, Huo D X, Nishimura K 2014 J. Alloys Compd. 582 670

    [9]

    Cui L, Wang L C, Dong Q Y, Liu F H, Mo Z J, Zhang Y, Niu E, Xu Z Y, Hu F X, Sun J R, Shen B G 2015 J. Alloys Compd. 622 24

    [10]

    Li L, Hutchison W D, Huo D X, Namiki T, Qian Z H, Nishimura K 2012 Scr. Mater. 67 237

    [11]

    Li L W, Namiki T, Huo D X, Qian Z H, Nishimura K 2013 Appl. Phys. Lett. 103 222405

    [12]

    Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q, Shen B G 2013 Appl. Phys. Lett. 103 052409

    [13]

    Balli M, Jandl S, Fournier P, Gospodinov M M 2014 Appl. Phys. Lett. 104 232402

    [14]

    Balli M, Jandl S, Fournier P, Mansouri S, Mukhin A, Ivanov Yu V, Balbashov A M 2015 J. Magn. Magn. Mater. 374 252

    [15]

    Alho B P, Magnus A, Carvalho G, von Ranke P J 2014 J. Appl. Phys. 116 113907

    [16]

    Scagnoli V, Allieta M, Walker H, Scavini M, Katsufuji T, Sagarna L, Zaharko O, Mazzoli C 2012 Phys. Rve. B 86 094432

    [17]

    Guguchia Z, Keller H, Kremer R K, J Köhler, Luetkens H, Goko T, Amato A, Bussmann-Holder A 2014 Phys. Rve. B 90 064413

    [18]

    Akamatsu H, Kumagai Y, Oba F, Fujita K, Murakami H, Tanaka K, Tanaka L 2011 Phys. Rev. B 83 214421

    [19]

    Mo Z J, Hao Z H, Deng J Z, Shen J, Li L, Wu J F, Hu F X, Sun J R, Shen B G 2017 J. Alloys Compd. 694 235

    [20]

    Mo Z J, Sun Q L, Wang C H, Wu H Z, Li L, Meng F B, Tang C C, Zhao Y, Shen J 2017 Ceram. Int. 43 2083

    [21]

    Li W W, Zhao R, Wang L, Tang R J, Zhu Y Y, Lee J H, Cao H X, Cai T Y, Guo H Z, Wang C, Ling L S, Pi L, Jin K J, Zhang Y H, Wang H Y, Wang Y Q, Ju S, Yang H 2013 Sci. Rep. 3 2618

    [22]

    Rubi K, Midya A, Mahendiran R, Repaka D V M, Ramanujan R V 2016 J. Appl. Phys. 119 243901

    [23]

    Mo Z J, Sun Q L, Shen J, Mo Y, Li Y J, Li L, Liu G D, Tang C C, Meng F B 2018 Chin. Phys. B 27 017501

  • [1]

    Benford S M, Brown G V 1981 J. Appl. Phys. 52 2110

    [2]

    Shen B G, Sun J R, Hu F X, Zhang H W, Chen Z H 2009 Materials. Adv. Mater. 21 4545

    [3]

    Tegus O, Bruck E, Buschow K H, DeBoer F R 2002 Nature 415 150

    [4]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401

    [5]

    Gupta S B, Suresh K G 2013 Appl. Phys. Lett. 102 022408

    [6]

    Mo Z J, Shen J, Yan LQ, Wu J F, Wang L C, Tang C C, Shen B G 2013 Appl. Phys. Lett. 102 192407

    [7]

    Chen J, Shen B G, Dong Q Y, Sun J R 2010 Solid State Commun. 150 1429

    [8]

    Li L W, Saensunon B, Hutchison W D, Huo D X, Nishimura K 2014 J. Alloys Compd. 582 670

    [9]

    Cui L, Wang L C, Dong Q Y, Liu F H, Mo Z J, Zhang Y, Niu E, Xu Z Y, Hu F X, Sun J R, Shen B G 2015 J. Alloys Compd. 622 24

    [10]

    Li L, Hutchison W D, Huo D X, Namiki T, Qian Z H, Nishimura K 2012 Scr. Mater. 67 237

    [11]

    Li L W, Namiki T, Huo D X, Qian Z H, Nishimura K 2013 Appl. Phys. Lett. 103 222405

    [12]

    Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q, Shen B G 2013 Appl. Phys. Lett. 103 052409

    [13]

    Balli M, Jandl S, Fournier P, Gospodinov M M 2014 Appl. Phys. Lett. 104 232402

    [14]

    Balli M, Jandl S, Fournier P, Mansouri S, Mukhin A, Ivanov Yu V, Balbashov A M 2015 J. Magn. Magn. Mater. 374 252

    [15]

    Alho B P, Magnus A, Carvalho G, von Ranke P J 2014 J. Appl. Phys. 116 113907

    [16]

    Scagnoli V, Allieta M, Walker H, Scavini M, Katsufuji T, Sagarna L, Zaharko O, Mazzoli C 2012 Phys. Rve. B 86 094432

    [17]

    Guguchia Z, Keller H, Kremer R K, J Köhler, Luetkens H, Goko T, Amato A, Bussmann-Holder A 2014 Phys. Rve. B 90 064413

    [18]

    Akamatsu H, Kumagai Y, Oba F, Fujita K, Murakami H, Tanaka K, Tanaka L 2011 Phys. Rev. B 83 214421

    [19]

    Mo Z J, Hao Z H, Deng J Z, Shen J, Li L, Wu J F, Hu F X, Sun J R, Shen B G 2017 J. Alloys Compd. 694 235

    [20]

    Mo Z J, Sun Q L, Wang C H, Wu H Z, Li L, Meng F B, Tang C C, Zhao Y, Shen J 2017 Ceram. Int. 43 2083

    [21]

    Li W W, Zhao R, Wang L, Tang R J, Zhu Y Y, Lee J H, Cao H X, Cai T Y, Guo H Z, Wang C, Ling L S, Pi L, Jin K J, Zhang Y H, Wang H Y, Wang Y Q, Ju S, Yang H 2013 Sci. Rep. 3 2618

    [22]

    Rubi K, Midya A, Mahendiran R, Repaka D V M, Ramanujan R V 2016 J. Appl. Phys. 119 243901

    [23]

    Mo Z J, Sun Q L, Shen J, Mo Y, Li Y J, Li L, Liu G D, Tang C C, Meng F B 2018 Chin. Phys. B 27 017501

  • [1] Mi Meng-Juan, Yu Li-Xuan, Xiao Han, Lü Bing-Bing, Wang Yi-Lin. Tuning magnetic properties of two-dimensional antiferromagnetic MPX3 by organic cations intercalation. Acta Physica Sinica, 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [2] Tan Bi, Gao Dong, Deng Deng-Fu, Chen Shu-Yao, Bi Lei, Liu Dong-Hua, Liu Tao. Transport characterization of magnetic phase transition in Mn3Sn thin films. Acta Physica Sinica, 2024, 73(6): 067501. doi: 10.7498/aps.73.20231766
    [3] Lin Yuan, Hu Feng-Xia, Shen Bao-Gen. Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion. Acta Physica Sinica, 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [4] Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng. Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy. Acta Physica Sinica, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [5] Zhang Yan, Zong Shuo-Tong, Sun Zhi-Gang, Liu Hong-Xia, Chen Feng-Hua, Zhang Ke-Wei, Hu Ji-Fan, Zhao Tong-Yun, Shen Bao-Gen. Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons. Acta Physica Sinica, 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683
    [6] Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong. Research progress of critical behaviors and magnetocaloric effects of perovskite manganites. Acta Physica Sinica, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [7] Zhang Hu, Xing Cheng-Fen, Long Ke-Wen, Xiao Ya-Ning, Tao Kun, Wang Li-Chen, Long Yi. Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation. Acta Physica Sinica, 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [8] Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian. Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound. Acta Physica Sinica, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [9] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [10] Sun Xiao-Dong, Xu Bao, Wu Hong-Ye, Cao Feng-Ze, Zhao Jian-Jun, Lu Yi. Magnetic entropy change and electrical transport properties of rare earth Tb doped manganites La4/3Sr5/3Mn2O7. Acta Physica Sinica, 2017, 66(15): 157501. doi: 10.7498/aps.66.157501
    [11] Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Research progress in magnetocaloric effect materials. Acta Physica Sinica, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [12] Wang Fang, Yuan Feng-Ying, Wang Jin-Zhi. Magnetic properties and magnetocaloric effect in Mn42Al50-xFe8+x alloys. Acta Physica Sinica, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [13] Cai Pei-Yang, Feng Shang-Shen, Chen Wei-Ping, Xue Shuang-Xi, Li Zhi-Gang, Zhou Ying, Wang Hai-Bo, Wang Gu-Ping. Magnetic entropy change and magnetic-field-induced strain in polycrystalline Ni47Mn32Ga21 alloy. Acta Physica Sinica, 2011, 60(10): 107501. doi: 10.7498/aps.60.107501
    [14] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [15] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [16] Zhang Li-Gang, Chen Jing, Zhu Bo-Quan, Li Ya-Wei, Wang Ru-Wu, Li Yun-Bao, Zhang Guo-Hong, Li Yu. Study on the magnetic entropy change and magnetic phase transition of NaZn13-type LaFe13-xAlxCy compounds. Acta Physica Sinica, 2006, 55(10): 5506-5510. doi: 10.7498/aps.55.5506
    [17] Shen Jun, Li Yang-Xian, Hu Feng-Xia, Wang Guang-Jun, Zhang Shao-Ying. Magnetic properties and magnetic entropy change of Ce2Fe16Al near Curie temperature. Acta Physica Sinica, 2003, 52(5): 1250-1254. doi: 10.7498/aps.52.1250
    [18] CHEN WEI, ZHONG WEI, PAN CHENG, CHANG HONG, DU YOU-WEI. CURIE TEMPERATURE AND MAGNETOCALORIC EFFECT OF POLYCRYSTALLINE La0.8-xCa0.2MnO3. Acta Physica Sinica, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
    [19] GUO GUANG-HUA, R.Z.LEVITIN. SPONTANEOUS AND FIELD-INDUCED MAGNETIC PHASE TRANSITIONS IN THE INTERMETALLIC COMPOUND DyMn2Ge2. Acta Physica Sinica, 2001, 50(2): 313-318. doi: 10.7498/aps.50.313
    [20] GUO GUANG-HUA, R.Z.LEVITIN. SPONTANEOUS MAGNETIC PHASE TRANSITION AND MAGNETOELASTIC ANOMALIES AT TRANSITION S IN INTERMETALLIC COMPOUNDS RMn2Ge2 (R=La,Pr,Nd,Sm,Gd,Tb, Y). Acta Physica Sinica, 2000, 49(9): 1838-1845. doi: 10.7498/aps.49.1838
Metrics
  • Abstract views:  5053
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Received Date:  21 September 2018
  • Accepted Date:  19 October 2018
  • Published Online:  20 December 2019

/

返回文章
返回