Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single photon detection and circular polarized emission manipulated with individual quantum dot

Li Tian-Xin Weng Qian-Chun Lu Jian Xia Hui An Zheng-Hua Chen Zhang-Hai Chen Ping-Ping Lu Wei

Citation:

Single photon detection and circular polarized emission manipulated with individual quantum dot

Li Tian-Xin, Weng Qian-Chun, Lu Jian, Xia Hui, An Zheng-Hua, Chen Zhang-Hai, Chen Ping-Ping, Lu Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Studies on quantum dots (QDs) provide great opportunities in single photon detection as well as single circular polarized photon emission, which are the key technology for future quantum information processing. For single photon detection, the quantum-dot-resonant-tunneling-diode (QD-RTD) is evaluated as one of the most promising scheme but still suffering from the ultralow working temperature (~5 K) and lack the capability to discriminate photon numbers. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual QDs coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished. On the other hand, we firstly performed the magneto-optical studies on single InGaAs/GaAs self-assembled QDs. We observed the exciton Zeeman splitting and diamagnetic shift of a single QD under magnetic field, and the exciton g factor and diamagnetic coefficient was extracted by fitting the magnetic field dependent PL energies. By comparing with theories, we discussed on the effect of QD size, shape and composition on these two parameters. Based on these work, we investigated the single QD exciton-cavity mode coupling effect under external magnetic field. By first time we observed the interaction of Zeeman splitted exciton spin states with the cavity mode and realized the selective enhancement of the SE rate of the exciton state with specific spin configuration by means of magnetic manipulation of Purcell effect. In this sense, single QD emission with higher circular polarization degree under non-polarized excitation was realized. Our results have high potential to open up a way to novel quantum light sources and quantum information processing applications based on cavity quantum electrodynamics effects.
      Corresponding author: Li Tian-Xin, txli@mail.sitp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91321311, 11574336) and the STCSM (Grant No. 18JC1420400).
    [1]

    Buckley S, Rivoire K, Vučković J 2012 Rep. Prog. Phys. 75 126503

    [2]

    Yuan Z L, Kardynal1 B E, Stevenson R M, Shields A J, Lobo C J, Cooper K, Beattie N S, Ritchie D A, Pepper M 2002 Science 295 102

    [3]

    Douse A, Suffczyński J, Beveratos A, Krebs O, Lemaître A, Sagnes I, Senellart P 2010 Nature 466 217

    [4]

    Carter S G, Sweeney T M, Kim M 2013 Nature Photon. 7 329

    [5]

    Michler P, Kiraz1 A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282

    [6]

    Salter C L, Stevenson R M, Farrer I, Nicoll C A, Ritchie D A, Shields A J 2010 Nature 465 594

    [7]

    Miyazawa T, Nakaoka T, Usuki T, Arakawa Y, Takemoto K, Hirose S, Okumura S, Takatsu M, Yokoyama N 2008 Appl. Phys. Lett. 92 161104

    [8]

    Birowosuto M D, Sumikura H, Matsuo S, Taniyama H, van Veldhoven P J, Nötzel R, Notomi M 2012 Sci. Rep. 2 32

    [9]

    Bennetta A J, Unitta D C, Atkinsonb B P, Ritchieb D A, Shields A J 2005 Opt. Express 13 50

    [10]

    Michler P, Imamoglu A, Mason M D, Carson P J, Geoffrey F S, Steven K B 2000 Nature 406 968

    [11]

    Bimberg D, Stock E, Lochmann A, Schliwa A, Tofflinger J A, Kalagin A K 2009 IEEE Photon. J. 1 58

    [12]

    Toishi A, Englund D, Faraon A, Vučković J 2009 Opt. Express 17 14618

    [13]

    Kim H, Bose R, Thomas C, Solomon G S, Waks E 2013 Nature Photon. 7 373

    [14]

    Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen N, Sauvan C, Lalanne P E, Gérard J M 2010 Nature Photon. 4 174

    [15]

    Hadfield R H 2009 Nature Photon. 3 696

    [16]

    Komiyama S, Astafiev O, Antonov V, Hirai H 2000 Nature 403 405

    [17]

    Blakesley J C, See P, Shields A J, Kardynał B E, Atkinson P, Farrer I, Ritchie D A 2005 Phys. Rev. Lett. 94 067401

    [18]

    Weng Q C, An Z H, Xiong D Y, Zhu Z Q 2015 Chin. Phys. Lett. 32 108503

    [19]

    Weng Q H, An Z H, Zhang B, Chen P P, Chen X S, Zhu Z Q, Lu W 2015 Sci. Rep. 5 9389

    [20]

    Weng Q C, An Z H, Zhu Z Q, Song J D, Choi W J 2014 Appl. Phys. Lett. 104 051113

    [21]

    Weng Q C, An Z H, Xiong D Y, Zhang B, Chen P P, Li T X, Zhu Z Q, Lu W 2014 Appl. Phys. Lett. 105 031114

    [22]

    Ren Q J, Lu J, Tan H H, Wu S, Sun L X, Zhou W H, Xie W, Sun Z, Zhu Y Y, Jagadish C, Shen S C, Chen Z H 2012 Nano Lett. 12 3455

  • [1]

    Buckley S, Rivoire K, Vučković J 2012 Rep. Prog. Phys. 75 126503

    [2]

    Yuan Z L, Kardynal1 B E, Stevenson R M, Shields A J, Lobo C J, Cooper K, Beattie N S, Ritchie D A, Pepper M 2002 Science 295 102

    [3]

    Douse A, Suffczyński J, Beveratos A, Krebs O, Lemaître A, Sagnes I, Senellart P 2010 Nature 466 217

    [4]

    Carter S G, Sweeney T M, Kim M 2013 Nature Photon. 7 329

    [5]

    Michler P, Kiraz1 A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282

    [6]

    Salter C L, Stevenson R M, Farrer I, Nicoll C A, Ritchie D A, Shields A J 2010 Nature 465 594

    [7]

    Miyazawa T, Nakaoka T, Usuki T, Arakawa Y, Takemoto K, Hirose S, Okumura S, Takatsu M, Yokoyama N 2008 Appl. Phys. Lett. 92 161104

    [8]

    Birowosuto M D, Sumikura H, Matsuo S, Taniyama H, van Veldhoven P J, Nötzel R, Notomi M 2012 Sci. Rep. 2 32

    [9]

    Bennetta A J, Unitta D C, Atkinsonb B P, Ritchieb D A, Shields A J 2005 Opt. Express 13 50

    [10]

    Michler P, Imamoglu A, Mason M D, Carson P J, Geoffrey F S, Steven K B 2000 Nature 406 968

    [11]

    Bimberg D, Stock E, Lochmann A, Schliwa A, Tofflinger J A, Kalagin A K 2009 IEEE Photon. J. 1 58

    [12]

    Toishi A, Englund D, Faraon A, Vučković J 2009 Opt. Express 17 14618

    [13]

    Kim H, Bose R, Thomas C, Solomon G S, Waks E 2013 Nature Photon. 7 373

    [14]

    Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen N, Sauvan C, Lalanne P E, Gérard J M 2010 Nature Photon. 4 174

    [15]

    Hadfield R H 2009 Nature Photon. 3 696

    [16]

    Komiyama S, Astafiev O, Antonov V, Hirai H 2000 Nature 403 405

    [17]

    Blakesley J C, See P, Shields A J, Kardynał B E, Atkinson P, Farrer I, Ritchie D A 2005 Phys. Rev. Lett. 94 067401

    [18]

    Weng Q C, An Z H, Xiong D Y, Zhu Z Q 2015 Chin. Phys. Lett. 32 108503

    [19]

    Weng Q H, An Z H, Zhang B, Chen P P, Chen X S, Zhu Z Q, Lu W 2015 Sci. Rep. 5 9389

    [20]

    Weng Q C, An Z H, Zhu Z Q, Song J D, Choi W J 2014 Appl. Phys. Lett. 104 051113

    [21]

    Weng Q C, An Z H, Xiong D Y, Zhang B, Chen P P, Li T X, Zhu Z Q, Lu W 2014 Appl. Phys. Lett. 105 031114

    [22]

    Ren Q J, Lu J, Tan H H, Wu S, Sun L X, Zhou W H, Xie W, Sun Z, Zhu Y Y, Jagadish C, Shen S C, Chen Z H 2012 Nano Lett. 12 3455

  • [1] Shen Shan-Shan, Gu Guo-Hua, Chen Qian, He Rui-Qing, Cao Qing-Qing. Time-space united coding spread spectrum single photon counting imaging method. Acta Physica Sinica, 2023, 72(2): 024202. doi: 10.7498/aps.72.20221438
    [2] Chen Qi, Dai Yue, Li Fei-Yan, Zhang Biao, Li Hao-Chen, Tan Jing-Rou, Wang Xiao-Han, He Guang-Long, Fei Yue, Wang Hao, Zhang La-Bao, Kang Lin, Chen Jian, Wu Pei-Heng. Design and fabrication of superconducting single-photon detector operating in 5–10 μm wavelength band. Acta Physica Sinica, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [3] Wu Chen-Yi, Wang Lin-Li, Shi Hao-Tian, Wang Yu-Rong, Pan Hai-Feng, Li Zhao-Hui, Wu Guang. Single-photon ranging with hundred-micron accuracy. Acta Physica Sinica, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [4] Zhang Hai-Yan, Wang Lin-Li, Wu Chen-Yi, Wang Yu-Rong, Yang Lei, Pan Hai-Feng, Liu Qiao-Li, Guo Xia, Tang Kai, Zhang Zhong-Ping, Wu Guang. Avalanche photodiode single-photon detector with high time stability. Acta Physica Sinica, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [5] Zhou Liang-Liang, Wu Hong-Bo, Li Xue-Ming, Tang Li-Bin, Guo Wei, Liang Jing. ZrS2 quantum dots: Preparation, structure, and optical properties. Acta Physica Sinica, 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
    [6] Li Wei, Fu Jing, Yang Yun-Yun, He Ji-Zhou. Quantum dot refrigerator driven by photon. Acta Physica Sinica, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [7] Zhang Qiang-Qiang,  Hu Jian-Yong,  Jing Ming-Yong,  Li Bin,  Qin Cheng-Bing,  Li Yao,  Xiao Lian-Tuan,  Jia Suo-Tang. Research on fluorescence lifetime dynamics of quantum dot by single photons modulation spectrum. Acta Physica Sinica, 2019, 68(1): 017803. doi: 10.7498/aps.68.20181797
    [8] Zhang Zhi-Wei,  Zhao Cui-Lan,  Sun Bao-Quan. 1.3 μm single photon emission from InAs/GaAs quantum dots. Acta Physica Sinica, 2018, 67(23): 237802. doi: 10.7498/aps.67.20181592
    [9] Zhao Rui-Tong, Liang Rui-Sheng, Wang Fa-Qiang. Quantum entanglement concentration for photonic polarization state assisted by electron spin. Acta Physica Sinica, 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [10] Zhao Yan-Hui, Qian Chen-Jiang, Tang Jing, Sun Yue, Peng Kai, Xu Xiu-Lai. Effects of location and polarization of a dipole source on the excitation of a photonic crystal H1 cavity. Acta Physica Sinica, 2016, 65(13): 134206. doi: 10.7498/aps.65.134206
    [11] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [12] Gu Li-Shan, Wang Dong-Sheng, Peng Yong-Gang, Zheng Yu-Ju. Statistics property of polarized photon emission driven bya pair of pulses in single quantum dot. Acta Physica Sinica, 2011, 60(8): 084207. doi: 10.7498/aps.60.084207
    [13] Wang Zhan-Guo, Niu Jie-Bin, Jia Rui, Peng Yin-Sheng, Yang Xiao-Hong, Ye Xiao-Ling, Xu Bo, Liang Song. Fabrication and luminescence characterization of two-dimensional GaAs-based photonic crystal nanocavities. Acta Physica Sinica, 2010, 59(10): 7073-7077. doi: 10.7498/aps.59.7073
    [14] Peng Yong-Gang, Zhang Xi-Zhong, Zhang Zhao-Yu, Zheng Yu-Jun. Photon emission of single quantum dot driven by continuous external field studied by using the generating function. Acta Physica Sinica, 2010, 59(3): 1791-1796. doi: 10.7498/aps.59.1791
    [15] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. Influence of temperature on the Bose condensation of photons and excitons in optic microcavity. Acta Physica Sinica, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [16] Peng Hong-Ling, Han Qin, Yang Xiao-Hong, Niu Zhi-Chuan. Modulation response analysis of 1.3 μm quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [17] Sun Zhi-Bin, Ma Hai-Qiang, Lei Ming, Yang Han-Dong, Wu Ling-An, Zhai Guang-Jie, Feng Ji. A single-photon detector in the near-infrared range. Acta Physica Sinica, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [18] Li Yao-Yi, Cheng Mu-Tian, Zhou Hui-Jun, Liu Shao-Ding, Wang Qu-Quan, Xue Qi-Kun. Efficiency of single photon emission in three-level system of semiconductor quantum dots with pulsed excitation. Acta Physica Sinica, 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
    [19] Tong Cun-Zhu, Niu Zhi-Chuan, Han Qin, Wu Rong-Han. Design and analysis of 1.3μm GaAs-based quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [20] Zhou Hui-Jun, Cheng Mu-Tian, Liu Shao-Ding, Wang Qu-Quan, Zhan Ming-Sheng, Xue Qi-Kun. High polarization properties of single-photon emission from anisotropic InGaAs quantum dots. Acta Physica Sinica, 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
Metrics
  • Abstract views:  5676
  • PDF Downloads:  163
  • Cited By: 0
Publishing process
  • Received Date:  19 November 2018
  • Accepted Date:  20 November 2018
  • Published Online:  20 November 2019

/

返回文章
返回