Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deterministic quantum entanglement among multiple quantum nodes

Liu Yan-Hong Wu Liang Yan Zhi-Hui Jia Xiao-Jun Peng Kun-Chi

Citation:

Deterministic quantum entanglement among multiple quantum nodes

Liu Yan-Hong, Wu Liang, Yan Zhi-Hui, Jia Xiao-Jun, Peng Kun-Chi
PDF
HTML
Get Citation
  • Quantum entanglement is a significant quantum resource, which plays a central role in quantum communication. For realizing quantum information network, it is important to establish deterministic quantum entanglement among multiple spatial-separated quantum memories, and then the stored entanglement is transferred into the quantum channels for distributing and transmitting the quantum information at the user-control time. Firstly, we introduce the scheme of deterministic generation polarization squeezed state at 795 nm. A pair of quadrature amplitude squeezed optical fields are prepared by two degenerate optical parameter amplifiers pumped by a laser at 398 nm, and then the polarization squeezed state of light appears by combining the generated two quadrature amplitude squeezed optical beams on a polarizing beam splitter. Secondly, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The quadrature tripartite entangled states of light corresponding to the resonance with D1 line of rubidium atoms are transformed into the continuous-variable polarization entanglement via polarization beam splitter with three bright local optical beams. Finally, we propose the generation, storage and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. By the method of electromagnetically induced transparency light-matter interaction, the optical multiple entangled state is mapped into three distant atomic ensembles to build the entanglement among three atomic spin waves. Then, the quantum noise of entanglement stored in the atomic ensembles is transferred to the three space-seperated quadrature entangled light fields through three quantum channels. The existence of entanglement among the three released beams verifies that the system has the ability to maintain the multipartite entanglement. This protocol realizes the entanglement among three distant quantum nodes, and it can be extended to quantum network with more quantum nodes. All of these lay the foundation for realizing the large-scale quantum network communication in the future.
      Corresponding author: Jia Xiao-Jun, jiaxj@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 61775127, 11474190, 11654002), the Program for Sanjin Scholars of Shanxi Province, China, the Shanxi Scholarship Council of China, and the Fund for Shanxi “1331 Project” Key Subjects Construction, China.
    [1]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar

    [2]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar

    [3]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [4]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [5]

    Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar

    [6]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [7]

    Jia X J, Su X L, Pan Q, Gao J R, Xie C D, Peng K C 2004 Phys. Rev. Lett. 93 250503Google Scholar

    [8]

    Takeda S, Fuwa M, van Loock P, Furusawa A 2015 Phys. Rev. Lett. 114 100501Google Scholar

    [9]

    Chen Y A, Zhang A N, Zhao Z, Zhou X Q, Lu C Y, Peng C Z, Yang T, Pan J W 2005 Phys. Rev. Lett. 95 200502Google Scholar

    [10]

    Lance A M, Symul T, Bowen W P, Sanders B C, Lam P K 2004 Phys. Rev. Lett. 92 177903Google Scholar

    [11]

    Zhou Y Y, Yu J, Yan Z H, Jia X J, Zhang J, Xie C D, Peng K C 2018 Phys. Rev. Lett. 121 150502Google Scholar

    [12]

    Cai X D, Wu D, Su Z S, Chen M C, Wang X L, Li L, Liu N L, Lu C Y, Pan J W 2015 Phys. Rev. Lett. 114 110504Google Scholar

    [13]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nat. Commun. 4 2828Google Scholar

    [14]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [15]

    Glöckl O, Heersink J, Korolkova N, Leuchs G, Lorenz S 2003 J. Opt. B: Quantum Semiclass. Opt. 5 S492Google Scholar

    [16]

    Iskhakov T Sh, Agafonov I N, Chekhova M V, Leuchs G 2012 Phys. Rev. Lett. 109 150502Google Scholar

    [17]

    Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nat. Commun. 2 174Google Scholar

    [18]

    Parigi V, Ambrosio V, Arnold C, Marrucci L, Sciarrino F, Laurat J 2015 Nat. Commun. 6 7706Google Scholar

    [19]

    Yan Z H, Jia X J 2017 Quantum Sci. Technol. 2 024003Google Scholar

    [20]

    Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359Google Scholar

    [21]

    Colangelo G, Ciurana F M, Bianchet L C, Sewell R J, Mitchell M W 2017 Nature 543 525Google Scholar

    [22]

    Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190Google Scholar

    [23]

    Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M, Gleyzes S 2016 Nature 535 262Google Scholar

    [24]

    Stute A, Casabone B, Schindler P, Monz T, Schmidt P O, Brandstätter B, Northup T E, Blatt R 2012 Nature 485 482Google Scholar

    [25]

    Hucul D, Inlek I V, Vittorini G, Crocker C, Debnath S, Clark S M, Monroe C 2014 Nat. Phys. 11 37Google Scholar

    [26]

    Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601Google Scholar

    [27]

    Lee H, Suh M G, Chen T, Li J, Diddams S A, Vahala K J 2013 Nat. Commun. 4 2468Google Scholar

    [28]

    Riedinger R, Hong S, Norte R A, Slater J A, Shang J, Krause A G, Anant V, Aspelmeyer M, Gröblacher S 2016 Nature 530 313Google Scholar

    [29]

    Kiesewetter S, Teh R Y, Drummond P D, Reid M D 2017 Phys. Rev. Lett. 119 023601Google Scholar

    [30]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503Google Scholar

    [31]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [32]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S E, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [33]

    Gao W B, Fallahi P, Togan E, Miguel-Sanchez J, Imamoglu A 2012 Nature 491 426Google Scholar

    [34]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [35]

    Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J, Kimble H J 2005 Nature 438 828Google Scholar

    [36]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [37]

    Choi K S, Deng H, Laurat J, Kimble H J 2008 Nature 452 67Google Scholar

    [38]

    Zhang W, Ding D S, Dong M X, Shi S, Wang K, Liu S L, Li Y, Zhou Z Y, Shi B S, Guo G C 2016 Nat. Commun. 7 13514Google Scholar

    [39]

    Choi K S, Goban A, Papp S B, van Enk S J, Kimble H J 2010 Nature 468 412Google Scholar

    [40]

    Julsgaard B, Kozhekin A E, Polzik E S 2001 Nature 413 400Google Scholar

    [41]

    Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, Polzik E S 2011 Phys. Rev. Lett. 107 080503Google Scholar

    [42]

    Ou Z Y 2008 Phys. Rev. A 78 023819Google Scholar

    [43]

    Yang X H, Zhou Y Y, Xiao M 2013 Sci. Rep. 3 3479Google Scholar

    [44]

    Liu Y H, Yan Z H, Jia X J, Xie C D 2016 Sci. Rep. 6 25715Google Scholar

    [45]

    Yadsanappleby H, Serafini A 2011 Phys. Lett. A 375 1864Google Scholar

    [46]

    Tikhonov K S, Golubeva T Y, Golubev Y M 2015 Opt. Spectrosc. 118 773Google Scholar

    [47]

    Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008 Phys. Rev. Lett. 100 093601Google Scholar

    [48]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602Google Scholar

    [49]

    Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio M B, Serafini A, Wolf M M, Polzik E S 2011 Nat. Phys. 7 13Google Scholar

    [50]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [51]

    Grangien P, Slusheg R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153Google Scholar

    [52]

    Polzik E S, Carri J, Kimble H J 1992 Phys. Rev. Lett. 68 3020Google Scholar

    [53]

    孙恒信, 刘奎, 张俊香, 郜江瑞 2015 物理学报 64 234210Google Scholar

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210Google Scholar

    [54]

    左小杰, 孙颍榕, 闫智辉, 贾晓军 2018 物理学报 67 134202Google Scholar

    Zuo X J, Sun Y R, Yan Z H, Jia X J 2018 Acta Phys. Sin. 67 134202Google Scholar

    [55]

    Vahlbruch H, Chelkowski S, Hage B 2006 Phys. Rev. Lett. 97 011101Google Scholar

    [56]

    万振菊, 冯晋霞, 孙志妮, 要立婷, 张宽收 2014 量子光学学报 20 271Google Scholar

    Wan Z J, Feng J X, Sun Z N, Yao L T, Zhang K S 2014 Acta Sin. Quantum Opt. 20 271Google Scholar

    [57]

    Korolkova N, Leuchs G, Loudon R, Ralph T C, Silberhorn C 2002 Phys. Rev. A 65 052306Google Scholar

    [58]

    Peuntinger C, Heim B, Müller C R, Gabriel C, Marquardt C, Leuchs G 2014 Phys. Rev. Lett. 113 060502Google Scholar

    [59]

    Josse V, Dantan A, Vernac L, Bramati A, Pinard M, Giacobino E 2003 Phys. Rev. Lett. 91 103601Google Scholar

    [60]

    Bowen W P, Schnabel R, Bachor H A, Lam P K 2002 Phys. Rev. Lett. 88 093601Google Scholar

    [61]

    Wu L, Liu Y H, Deng R J, Yan Z H, Jia X J, Peng K C 2016 J. Opt. Soc. Am. B 33 2296Google Scholar

    [62]

    Josse V, Dantan A, Vernac L, Bramati A, Pinard M, Giacobino E 2004 Phys. Rev. Lett. 92 123601Google Scholar

    [63]

    闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 物理学报 61 014206Google Scholar

    Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206Google Scholar

    [64]

    Jia X J, Yan Z H, Duan Z Y, Su X L, Wang H, Xie C D, Peng K C 2012 Phys. Rev. Lett. 109 253604Google Scholar

    [65]

    Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012 Opt. Lett. 37 5178Google Scholar

    [66]

    Yan Z H, Jia X J 2015 J. Opt. Soc. Am. B 32 2139Google Scholar

    [67]

    Wu L, Yan Z H, Liu Y H, Deng R J, Jia X J, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 161102Google Scholar

    [68]

    Teh R Y, Reid M D 2014 Phys. Rev. A 90 062337Google Scholar

    [69]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [70]

    Bowen W P, Treps N, Schnabel R, Lam P K 2002 Phys. Rev. Lett. 89 253601Google Scholar

    [71]

    van Loock P, Furusawa A 2003 Phys. Rev. A 67 052315Google Scholar

    [72]

    Hofmann H F, Takeuchi S 2003 Phys. Rev. A 68 032103Google Scholar

    [73]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [74]

    Lvovsky A I, Sander B C, Tittel W 2009 Nat. Photon. 3 706Google Scholar

    [75]

    Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209Google Scholar

    [76]

    Hammerer K, Sørensen A S, Polzik E S 2010 Rev. Mod. Phys. 82 1041Google Scholar

    [77]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [78]

    Wootton J R 2012 J. Mod. Opt. 59 1717Google Scholar

    [79]

    Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519Google Scholar

    [80]

    Northup T E, Blatt R 2014 Nat. Photon. 8 356Google Scholar

    [81]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L 2001 Phys. Rev. Lett. 86 783Google Scholar

    [82]

    Fleischhayer M, Lukin M 2002 Phys. Rev. A 65 022314Google Scholar

    [83]

    邓瑞婕, 闫智辉, 贾晓军 2017 物理学报 66 074201Google Scholar

    Deng R J, Yan Z H, Jia X J 2017 Acta Phys. Sin. 66 074201Google Scholar

    [84]

    Julsgaard B, Sherson J, Cirac J I, Fiurasek J, Polzik E S 2004 Nature 432 482Google Scholar

    [85]

    Hétet G, Longdell J J, Sellars M J, Lam P K, Buchler B C 2008 Phys. Rev. Lett. 101 203601Google Scholar

    [86]

    Moiseev S, Kröll S 2001 Phys. Rev. Lett. 87 173601Google Scholar

    [87]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094Google Scholar

    [88]

    杨胜军 2014 博士学位论文 (合肥: 中国科学技术大学)

    Yang S J 2014 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [89]

    Alexander A L, Longdell J J, Sellars M J, Manson N B 2006 Phys. Rev. Lett. 96 043602Google Scholar

    [90]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2015 Phys. Rev. Lett. 114 050502Google Scholar

    [91]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [92]

    温馨, 韩亚帅, 刘金玉, 白乐乐, 何军, 王军民 2018 物理学报 67 024207Google Scholar

    Wen X, Han Y S, Liu J Y, Bai L L, He J, Wang J M 2018 Acta Phys. Sin. 67 024207Google Scholar

    [93]

    吴量, 刘艳红, 邓瑞婕, 闫智辉, 贾晓军 2017 光学学报 37 0527001Google Scholar

    Wu L, Liu Y H, Deng R J, Yan Z H, Jia X J 2017 Acta Opt. Sin. 37 0527001Google Scholar

    [94]

    Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J, Yonezawa H, Menicucci N C, Furusawa A 2013 Nat. Photon. 7 982Google Scholar

    [95]

    Roslund J, Medeiros R, Jiang S, Fabre C, Treps N 2014 Nat. Photon. 8 109Google Scholar

    [96]

    Phillips N B, Gorshkov A V, Novikova I 2011 Phys. Rev. A 83 063823Google Scholar

    [97]

    Lobino M, Kupchak C, Figueroa E, Lvovsky A I 2009 Phys. Rev. Lett. 102 203601Google Scholar

    [98]

    Lauk N, O’Brien C, Fleischhauer M 2013 Phys. Rev. A 88 013823Google Scholar

    [99]

    Barrett S D 2010 New J. Phys. 12 093032Google Scholar

    [100]

    Datta A, Zhang L J, Nunn J, Langford N K, Feito A, Plenio M B, Walmsley I A 2012 Phys. Rev. Lett. 108 060502Google Scholar

    [101]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [102]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381Google Scholar

    [103]

    Saunders D J, Munns J H D, Champion T F M, Qiu C, Kaczmarek K T, Poem E, Ledingham P M, Walmsley A I, Nunn J 2016 Phys. Rev. Lett. 116 090501Google Scholar

    [104]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

  • 图 1  偏振压缩光场制备原理图

    Figure 1.  Schematic of generation system of polarization squeezing.

    图 2  Stokes分量(a) ${\hat S_0}$, (b) ${\hat S_1}$, (c)${\hat S_2}$, (d) ${\hat S_3}$的量子噪声的实验测量(HWP, 二分之一波片; QWP, 四分之一波片; PBS, 偏振分束棱镜; +/−, 功率加法/减法器)

    Figure 2.  Measurement of quantum noise of Stokes component (a) ${\hat S_0}$, (b) ${\hat S_1}$, (c) ${\hat S_2}$, (d) ${\hat S_3}$. HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarization beam splitter; +/−, positive/negative power combiner.

    图 3  偏振压缩光Stokes分量的量子噪声[61] (a) ${\hat S_0}$; (b) $\hat S{}_1$; (c) ${\hat S_2}$; (d) ${\hat S_3}$

    Figure 3.  Quantum noises of Stokes component of polarization squeezedlight[61]: (a) ${\hat S_0}$; (b) ${\hat S_1}$; (c) ${\hat S_2}$; (d) ${\hat S_3}$.

    图 4  偏振纠缠制备原理图

    Figure 4.  Schematic for the generation system of polarization entanglement.

    图 5  三组分偏振纠缠态产生方案(BS1, 光学分束器1; BS2, 光学分束器2; PBS1, 偏振分束棱镜1; PBS2, 偏振分束棱镜2; PBS3, 偏振分束棱镜3)

    Figure 5.  Schematic for the generation of tripartite polarization entangled state. BS1, beam splitter1; BS2, beam splitter2; PBS1, polarization beam splitter1; PBS2, polarization beam splitter2; PBS3, polarization beam splitter3.

    图 6  分析频率在1—6 MHz间测量的Stokes关联方差 (a) ${{\text{δ }}^2}({\hat S_{{2_{{d_2}}}}} - {\hat S_{{2_{{d_3}}}}})$; (b) ${{\text{δ }}^2}({g_1}{\hat S_{{3_{{d_1}}}}} + {\hat S_{{3_{{d_2}}}}} + {\hat S_{{3_{d3}}}})$; (c) ${{\text{δ }}^2}({\hat S_{{2_{{d_1}}}}} - {\hat S_{{2_{d3}}}})$; (d) ${{\text{δ }}^2}({\hat S_{{3_{{d_1}}}}} + {g_2}{\hat S_{{3_{{d_2}}}}} + {\hat S_{{3_{d3}}}})$; (e) ${{\text{δ }}^2}({\hat S_{{2_{{d_1}}}}} - {\hat S_{{2_{d2}}}})$; (f) ${{\text{δ }}^2}({\hat S_{{3_{{d_1}}}}} + {\hat S_{{3_{{d_2}}}}} + {g_3}{\hat S_{{3_{d3}}}})$

    Figure 6.  Measured correlation variances of (a) ${{\text{δ }}^2}({\hat S_{{2_{{d_2}}}}} - {\hat S_{{2_{{d_3}}}}})$, (b) ${{\text{δ }}^2}({g_1}{\hat S_{{3_{{d_1}}}}} + {\hat S_{{3_{{d_2}}}}} + {\hat S_{{3_{d3}}}})$, (c) ${{\text{δ }}^2}({\hat S_{{2_{{d_1}}}}} - {\hat S_{{2_{d3}}}})$, (d) ${{\text{δ }}^2}({\hat S_{{3_{{d_1}}}}} + {g_2}{\hat S_{{3_{{d_2}}}}} + {\hat S_{{3_{d3}}}})$, (e) ${{\text{δ }}^2}({\hat S_{{2_{{d_1}}}}} - {\hat S_{{2_{d2}}}})$, (f) ${{\text{δ }}^2}({\hat S_{{3_{{d_1}}}}} + {\hat S_{{3_{{d_2}}}}} + {g_3}{\hat S_{{3_{d3}}}})$ over the analysis frequency rangefrom 1 to 6 MHz.

    图 7  原子系综纠缠示意图

    Figure 7.  Schematic of atom-atom entanglement generation system.

    图 8  三原子系综纠缠实验装置图

    Figure 8.  Experimental device diagram of quantum entanglement among three distant atomic ensembles.

    图 9  信号光与控制光的时序控制图

    Figure 9.  Sequence control of signal and control light.

    图 10  测量的输入模式和释放模式的关联方差

    Figure 10.  Measured normalized correlation variances of input and released optical submodes.

    表 1  释放光模正交分量不同组合的归一化关联方差

    Table 1.  Values of normalized correlation variances for different combinations.

    不同组合的关联方差输入模式/dB原子自旋波/dB释放模式/dB
    $\left\langle {{{\text{δ}}^2}({{\hat X}_2} - {{\hat X}_3})} \right\rangle $−3.30 ± 0.05−0.56 ± 0.03−0.37 ± 0.03
    $\left\langle {{{\text{δ}}^2}({g_1}{{\hat P}_1} + {{\hat P}_2} + {{\hat P}_3})} \right\rangle $−2.93 ± 0.05−0.15 ± 0.02−0.10 ± 0.02
    $\left\langle {{{\text{δ}}^2}({{\hat X}_1} - {{\hat X}_3})} \right\rangle $−3.25 ± 0.05−0.53 ± 0.03−0.35 ± 0.03
    $\left\langle {{{\text{δ}}^2}({{\hat P}_1} + {g_2}{{\hat P}_2} + {{\hat P}_3})} \right\rangle $−2.91 ± 0.05−0.15 ± 0.02−0.10 ± 0.02
    $\left\langle {{{\text{δ}}^2}({{\hat X}_1} - {{\hat X}_2})} \right\rangle $−3.25 ± 0.05−0.52 ± 0.03−0.34 ± 0.03
    $\left\langle {{{\text{δ}}^2}({g_1}{{\hat P}_2} + {{\hat P}_2} + {{\hat P}_3})} \right\rangle $−2.90 ± 0.05−0.14 ± 0.02−0.09 ± 0.02
    DownLoad: CSV
  • [1]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar

    [2]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar

    [3]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [4]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [5]

    Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar

    [6]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [7]

    Jia X J, Su X L, Pan Q, Gao J R, Xie C D, Peng K C 2004 Phys. Rev. Lett. 93 250503Google Scholar

    [8]

    Takeda S, Fuwa M, van Loock P, Furusawa A 2015 Phys. Rev. Lett. 114 100501Google Scholar

    [9]

    Chen Y A, Zhang A N, Zhao Z, Zhou X Q, Lu C Y, Peng C Z, Yang T, Pan J W 2005 Phys. Rev. Lett. 95 200502Google Scholar

    [10]

    Lance A M, Symul T, Bowen W P, Sanders B C, Lam P K 2004 Phys. Rev. Lett. 92 177903Google Scholar

    [11]

    Zhou Y Y, Yu J, Yan Z H, Jia X J, Zhang J, Xie C D, Peng K C 2018 Phys. Rev. Lett. 121 150502Google Scholar

    [12]

    Cai X D, Wu D, Su Z S, Chen M C, Wang X L, Li L, Liu N L, Lu C Y, Pan J W 2015 Phys. Rev. Lett. 114 110504Google Scholar

    [13]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nat. Commun. 4 2828Google Scholar

    [14]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [15]

    Glöckl O, Heersink J, Korolkova N, Leuchs G, Lorenz S 2003 J. Opt. B: Quantum Semiclass. Opt. 5 S492Google Scholar

    [16]

    Iskhakov T Sh, Agafonov I N, Chekhova M V, Leuchs G 2012 Phys. Rev. Lett. 109 150502Google Scholar

    [17]

    Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nat. Commun. 2 174Google Scholar

    [18]

    Parigi V, Ambrosio V, Arnold C, Marrucci L, Sciarrino F, Laurat J 2015 Nat. Commun. 6 7706Google Scholar

    [19]

    Yan Z H, Jia X J 2017 Quantum Sci. Technol. 2 024003Google Scholar

    [20]

    Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359Google Scholar

    [21]

    Colangelo G, Ciurana F M, Bianchet L C, Sewell R J, Mitchell M W 2017 Nature 543 525Google Scholar

    [22]

    Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190Google Scholar

    [23]

    Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M, Gleyzes S 2016 Nature 535 262Google Scholar

    [24]

    Stute A, Casabone B, Schindler P, Monz T, Schmidt P O, Brandstätter B, Northup T E, Blatt R 2012 Nature 485 482Google Scholar

    [25]

    Hucul D, Inlek I V, Vittorini G, Crocker C, Debnath S, Clark S M, Monroe C 2014 Nat. Phys. 11 37Google Scholar

    [26]

    Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601Google Scholar

    [27]

    Lee H, Suh M G, Chen T, Li J, Diddams S A, Vahala K J 2013 Nat. Commun. 4 2468Google Scholar

    [28]

    Riedinger R, Hong S, Norte R A, Slater J A, Shang J, Krause A G, Anant V, Aspelmeyer M, Gröblacher S 2016 Nature 530 313Google Scholar

    [29]

    Kiesewetter S, Teh R Y, Drummond P D, Reid M D 2017 Phys. Rev. Lett. 119 023601Google Scholar

    [30]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503Google Scholar

    [31]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [32]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S E, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [33]

    Gao W B, Fallahi P, Togan E, Miguel-Sanchez J, Imamoglu A 2012 Nature 491 426Google Scholar

    [34]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [35]

    Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J, Kimble H J 2005 Nature 438 828Google Scholar

    [36]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [37]

    Choi K S, Deng H, Laurat J, Kimble H J 2008 Nature 452 67Google Scholar

    [38]

    Zhang W, Ding D S, Dong M X, Shi S, Wang K, Liu S L, Li Y, Zhou Z Y, Shi B S, Guo G C 2016 Nat. Commun. 7 13514Google Scholar

    [39]

    Choi K S, Goban A, Papp S B, van Enk S J, Kimble H J 2010 Nature 468 412Google Scholar

    [40]

    Julsgaard B, Kozhekin A E, Polzik E S 2001 Nature 413 400Google Scholar

    [41]

    Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, Polzik E S 2011 Phys. Rev. Lett. 107 080503Google Scholar

    [42]

    Ou Z Y 2008 Phys. Rev. A 78 023819Google Scholar

    [43]

    Yang X H, Zhou Y Y, Xiao M 2013 Sci. Rep. 3 3479Google Scholar

    [44]

    Liu Y H, Yan Z H, Jia X J, Xie C D 2016 Sci. Rep. 6 25715Google Scholar

    [45]

    Yadsanappleby H, Serafini A 2011 Phys. Lett. A 375 1864Google Scholar

    [46]

    Tikhonov K S, Golubeva T Y, Golubev Y M 2015 Opt. Spectrosc. 118 773Google Scholar

    [47]

    Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008 Phys. Rev. Lett. 100 093601Google Scholar

    [48]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602Google Scholar

    [49]

    Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio M B, Serafini A, Wolf M M, Polzik E S 2011 Nat. Phys. 7 13Google Scholar

    [50]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [51]

    Grangien P, Slusheg R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153Google Scholar

    [52]

    Polzik E S, Carri J, Kimble H J 1992 Phys. Rev. Lett. 68 3020Google Scholar

    [53]

    孙恒信, 刘奎, 张俊香, 郜江瑞 2015 物理学报 64 234210Google Scholar

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210Google Scholar

    [54]

    左小杰, 孙颍榕, 闫智辉, 贾晓军 2018 物理学报 67 134202Google Scholar

    Zuo X J, Sun Y R, Yan Z H, Jia X J 2018 Acta Phys. Sin. 67 134202Google Scholar

    [55]

    Vahlbruch H, Chelkowski S, Hage B 2006 Phys. Rev. Lett. 97 011101Google Scholar

    [56]

    万振菊, 冯晋霞, 孙志妮, 要立婷, 张宽收 2014 量子光学学报 20 271Google Scholar

    Wan Z J, Feng J X, Sun Z N, Yao L T, Zhang K S 2014 Acta Sin. Quantum Opt. 20 271Google Scholar

    [57]

    Korolkova N, Leuchs G, Loudon R, Ralph T C, Silberhorn C 2002 Phys. Rev. A 65 052306Google Scholar

    [58]

    Peuntinger C, Heim B, Müller C R, Gabriel C, Marquardt C, Leuchs G 2014 Phys. Rev. Lett. 113 060502Google Scholar

    [59]

    Josse V, Dantan A, Vernac L, Bramati A, Pinard M, Giacobino E 2003 Phys. Rev. Lett. 91 103601Google Scholar

    [60]

    Bowen W P, Schnabel R, Bachor H A, Lam P K 2002 Phys. Rev. Lett. 88 093601Google Scholar

    [61]

    Wu L, Liu Y H, Deng R J, Yan Z H, Jia X J, Peng K C 2016 J. Opt. Soc. Am. B 33 2296Google Scholar

    [62]

    Josse V, Dantan A, Vernac L, Bramati A, Pinard M, Giacobino E 2004 Phys. Rev. Lett. 92 123601Google Scholar

    [63]

    闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 物理学报 61 014206Google Scholar

    Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206Google Scholar

    [64]

    Jia X J, Yan Z H, Duan Z Y, Su X L, Wang H, Xie C D, Peng K C 2012 Phys. Rev. Lett. 109 253604Google Scholar

    [65]

    Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012 Opt. Lett. 37 5178Google Scholar

    [66]

    Yan Z H, Jia X J 2015 J. Opt. Soc. Am. B 32 2139Google Scholar

    [67]

    Wu L, Yan Z H, Liu Y H, Deng R J, Jia X J, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 161102Google Scholar

    [68]

    Teh R Y, Reid M D 2014 Phys. Rev. A 90 062337Google Scholar

    [69]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [70]

    Bowen W P, Treps N, Schnabel R, Lam P K 2002 Phys. Rev. Lett. 89 253601Google Scholar

    [71]

    van Loock P, Furusawa A 2003 Phys. Rev. A 67 052315Google Scholar

    [72]

    Hofmann H F, Takeuchi S 2003 Phys. Rev. A 68 032103Google Scholar

    [73]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [74]

    Lvovsky A I, Sander B C, Tittel W 2009 Nat. Photon. 3 706Google Scholar

    [75]

    Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209Google Scholar

    [76]

    Hammerer K, Sørensen A S, Polzik E S 2010 Rev. Mod. Phys. 82 1041Google Scholar

    [77]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [78]

    Wootton J R 2012 J. Mod. Opt. 59 1717Google Scholar

    [79]

    Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519Google Scholar

    [80]

    Northup T E, Blatt R 2014 Nat. Photon. 8 356Google Scholar

    [81]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L 2001 Phys. Rev. Lett. 86 783Google Scholar

    [82]

    Fleischhayer M, Lukin M 2002 Phys. Rev. A 65 022314Google Scholar

    [83]

    邓瑞婕, 闫智辉, 贾晓军 2017 物理学报 66 074201Google Scholar

    Deng R J, Yan Z H, Jia X J 2017 Acta Phys. Sin. 66 074201Google Scholar

    [84]

    Julsgaard B, Sherson J, Cirac J I, Fiurasek J, Polzik E S 2004 Nature 432 482Google Scholar

    [85]

    Hétet G, Longdell J J, Sellars M J, Lam P K, Buchler B C 2008 Phys. Rev. Lett. 101 203601Google Scholar

    [86]

    Moiseev S, Kröll S 2001 Phys. Rev. Lett. 87 173601Google Scholar

    [87]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094Google Scholar

    [88]

    杨胜军 2014 博士学位论文 (合肥: 中国科学技术大学)

    Yang S J 2014 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [89]

    Alexander A L, Longdell J J, Sellars M J, Manson N B 2006 Phys. Rev. Lett. 96 043602Google Scholar

    [90]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2015 Phys. Rev. Lett. 114 050502Google Scholar

    [91]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [92]

    温馨, 韩亚帅, 刘金玉, 白乐乐, 何军, 王军民 2018 物理学报 67 024207Google Scholar

    Wen X, Han Y S, Liu J Y, Bai L L, He J, Wang J M 2018 Acta Phys. Sin. 67 024207Google Scholar

    [93]

    吴量, 刘艳红, 邓瑞婕, 闫智辉, 贾晓军 2017 光学学报 37 0527001Google Scholar

    Wu L, Liu Y H, Deng R J, Yan Z H, Jia X J 2017 Acta Opt. Sin. 37 0527001Google Scholar

    [94]

    Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J, Yonezawa H, Menicucci N C, Furusawa A 2013 Nat. Photon. 7 982Google Scholar

    [95]

    Roslund J, Medeiros R, Jiang S, Fabre C, Treps N 2014 Nat. Photon. 8 109Google Scholar

    [96]

    Phillips N B, Gorshkov A V, Novikova I 2011 Phys. Rev. A 83 063823Google Scholar

    [97]

    Lobino M, Kupchak C, Figueroa E, Lvovsky A I 2009 Phys. Rev. Lett. 102 203601Google Scholar

    [98]

    Lauk N, O’Brien C, Fleischhauer M 2013 Phys. Rev. A 88 013823Google Scholar

    [99]

    Barrett S D 2010 New J. Phys. 12 093032Google Scholar

    [100]

    Datta A, Zhang L J, Nunn J, Langford N K, Feito A, Plenio M B, Walmsley I A 2012 Phys. Rev. Lett. 108 060502Google Scholar

    [101]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [102]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381Google Scholar

    [103]

    Saunders D J, Munns J H D, Champion T F M, Qiu C, Kaczmarek K T, Poem E, Ledingham P M, Walmsley A I, Nunn J 2016 Phys. Rev. Lett. 116 090501Google Scholar

    [104]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

  • [1] Xia Gang, Zhang Ya-Peng, Tang Jing-Wen, Li Chun-Yan, Wu Chun-Wang, Zhang Jie, Zhou Yan-Li. Metastable dynamics of Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240233
    [2] Zhou Fei, Jia Feng-Dong, Liu Xiu-Bin, Zhang Jian, Xie Feng, Zhong Zhi-Ping. Measurement of microwave electric field based on electromagnetically induced transparency by using cold Rydberg atoms. Acta Physica Sinica, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [3] Pei Li-Ya, Zheng Shi-Yang, Niu Jin-Yan. Λ-type electromagnetically induced transparency and absorption by controlling atomic coherence. Acta Physica Sinica, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [4] Yan Dong, Wang Bin-Bin, Bai Wen-Jie, Liu Bing, Du Xiu-Guo, Ren Chun-Nian. Phase in Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [5] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [6] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of a cesium Rydberg atom in weak radio-frequency field. Acta Physica Sinica, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [7] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of Rydberg atoms in modulated laser fields. Acta Physica Sinica, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [8] Chen Qiu-Cheng. Nonlinear Faraday rotation in electromagnetically induced transparency medium of semiconductor three quantum dots. Acta Physica Sinica, 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [9] Bai Jin-Hai, Lu Xiao-Gang, Miao Xing-Xu, Pei Li-Ya, Wang Meng, Gao Yan-Lei, Wang Ru-Quan, Wu Ling-An, Fu Pan-Ming, Zuo Zhan-Chun. Analysis on the absorption curve asymmetry of electromagnetically induced transparency in Rb87 cold atoms. Acta Physica Sinica, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [10] Wang Meng, Bai Jin-Hai, Pei Li-Ya, Lu Xiao-Gang, Gao Yan-Lei, Wang Ru-Quan, Wu Ling-An, Yang Shi-Ping, Pang Zhao-Guang, Fu Pan-Ming, Zuo Zhan-Chun. Electromagnetically induced transparency in a near-resonance coupling field. Acta Physica Sinica, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [11] Zhao Hu, Li Tie-Fu, Liu Jian-She, Chen Wei. Progress of electromagnetically induced transparency based on superconducting qubits. Acta Physica Sinica, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [12] She Yan-Chao, Zhang Wei-Xi, Wang Deng-Long. Nonlinear Faraday rotation in electromagnetically induce transparency medium. Acta Physica Sinica, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [13] She Yan-Chao, Wang Deng-Long, Ding Jian-Wen. Spatial weak-light ring dark solitons in an electromagnetically induced transparency medium. Acta Physica Sinica, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [14] Liu Chun-Xu, Zhang Ji-Sen, Liu Jun-Ye, Jin Guang. The quantum coherent left handness of Λ-type four level system in Er3+:YAlO3 crystal. Acta Physica Sinica, 2009, 58(8): 5778-5783. doi: 10.7498/aps.58.5778
    [15] Zhuang Fei, Shen Jian-Qi, Ye Jun. Controlling the photonic bandgap structures via manipulation of refractive index of electromagnetically induced transparency vapor. Acta Physica Sinica, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [16] Chen Jun, Liu Zheng-Dong, Zheng Jun, Fang Hui-Juan. Effect of vacuum-induced coherence in a four-level atomic system via quantum interference. Acta Physica Sinica, 2007, 56(11): 6441-6445. doi: 10.7498/aps.56.6441
    [17] Yao Ming, Zhu Ka-Di, Yuan Xiao-Zhong, Jiang Yi-Wen, Wu Zhuo-Jie. Phonon mediated electromagnetically induced transparency and ultraslow light in strongly coupled exciton-phonon systems. Acta Physica Sinica, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] Fang Yuan-Feng, Du Chun-Guang, Li Shi-Qun. Quntum interference of four-level atomic system embedded in photonic band gap structure. Acta Physica Sinica, 2006, 55(9): 4652-4658. doi: 10.7498/aps.55.4652
    [19] Liu Zheng-Dong, Wu Qiang. Electromagnetically induced transparency in a four-level atomic system driven by three coupled fields. Acta Physica Sinica, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [20] Zhao Jian-Ming, Zhao Yan-Ting, Huang Tao, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation of electromagnetically induced transparency with double-pumping lasers. Acta Physica Sinica, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
Metrics
  • Abstract views:  8381
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2018
  • Accepted Date:  09 October 2018
  • Available Online:  01 February 2019
  • Published Online:  05 February 2019

/

返回文章
返回