Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge based on double-pass amplification

Liu Tao Zhao Yong-Peng Cui Huai-Yu Liu Xiao-Lin

Citation:

Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge based on double-pass amplification

Liu Tao, Zhao Yong-Peng, Cui Huai-Yu, Liu Xiao-Lin
PDF
HTML
Get Citation
  • In this paper, a double-pass amplification experiment of a Ne-like Ar C line 69.8 nm laser is established. The 45-cmlong capillary is used as the discharge load to obtain a double-pass amplification output of a Ne-like Ar C line 69.8 nm laser. Under the same initial experimental conditions that the initial pressure is 15.4 Pa and the main pulse current amplitude is 13.5 kA, the laser pulse intensity and the full width at half maximum (FWHM) of the laser pulse of the single-pass amplification output and the double-pass amplification output are measured by a vacuum X-ray diode (XRD) behind a vacuum ultraviolet (VUV) monochromator (Acton VSN-515) which is used to disperse the extreme ultraviolet (EUV) emission. And then the laser beam divergence of single-pass amplification output and double-pass amplification output are also measured by a space-resolving flat-field EUV spectrograph combined with an EUV CCD (Andor Newton DO920P-BN). The amplitude of the double-pass amplification laser output is 9 times larger than that of single-pass amplification output, and the FWHM of the double-pass amplification laser pulse is nearly 2.4 ns. While the laser beam divergence angle of the double-pass amplification output is 6.6 times wider than that of single-pass amplification output. By comparing the single-pass amplification and double-pass amplification output experimental results, the gain duration of the gain medium in the double-pass amplification and the radial distribution characteristics of the gain medium are analyzed by using the calculation formula of the double-pass amplification laser intensity. The gain duration is more than 4 ns, during this time the gain coefficient decreases at 1.6 ns. And the gain coefficient is the smallest at 2.8 ns, meanwhile the intensity of the single-pass amplification laser is maximum, and the gain medium is in the gain saturation state. So this result indicates that the minimum gain coefficient at this moment is due to the gain saturation effect. Using a similar calculation method to analyze the spatial distribution of gain coefficients, the gain on the plasma axis is larger than that off the plasma axis. These results lay a foundation for the subsequent establishment of resonant cavity and the multi-pass amplification experiment of capillary discharge Ne-like Ar laser.
      Corresponding author: Zhao Yong-Peng, zhaoyp3@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61875045) and the Natural Science Foundation of Tianjin, China (Grant No. 17JCYBJC18200).
    [1]

    Carbajo S, Howlett I D, Brizuela F, Buchanan K S, Marconi M C 2012 Opt. Lett. 37 2994Google Scholar

    [2]

    Nejdl J, Howlett I D, Carlton D, Anderson E H, Chao W, Marconi M C, Rocca J J, Menoni C S 2015 IEEE Photon. J. 7 1

    [3]

    Rocca J J, Shlyaptsev V, Tomasel F G, Cortazar O D, Hartshorn D, Chilla J L 1994 Phys. Rev. Lett. 73 2192Google Scholar

    [4]

    Zhao Y P, Jiang S, Xie Y, Yang D W, Teng S P, Chen D Y, Wang Q 2011 Opt. Lett. 36 3458Google Scholar

    [5]

    Frati M, Seminario M, Rocca J J 2000 Opt. Lett. 25 1022Google Scholar

    [6]

    Tomasel F G, Rocca J J, Shlyaptsev V N, Macchietto C D 1997 Phys. Rev. A 55 1437Google Scholar

    [7]

    Elton R C, Datla R U, Roberts J R, Bhatia A K 1989 Phys. Rev. A 40 4142Google Scholar

    [8]

    Bernstein E R, Dong F, Guo Y Q, Shin J W, Heinbuch S, Rocca J J 2016 X-Ray Laser (Switzerland: Springer) p359

    [9]

    Menoni C S, Nejdl J, Monserud N, Howleet I D, Carlton D, Anderson E H, Chao W, Marconi M C, Rocca J J 2016 X-Ray Laser 2014 (Switzerland: Springer) p259

    [10]

    Suckewer S, Skinner C H, Milchberg H, Keane C, Voorhee D 1985 Phys. Rev. Lett. 55 1753Google Scholar

    [11]

    Ceglio N M, Gaines D P, Trebes J E, London R A, Stearns D G 1988 Appl. Opt. 27 5022Google Scholar

    [12]

    Murai K, Yuan G, Kodama R, Daido H, Kato Y, Niibe M, Miyake A, Tsukamoto M, Fukuda Y, Neely D, Macphee A G 1994 Jpn. J. Appl. Phys. 33 L600Google Scholar

    [13]

    Carillon A, Chen H Z, Dhez P, Dwivedi L, Jacoby J, Jaegle P, Jamelot G, Zhang J, Key M H, Kidd A, Klisnick A, Kodama R, Krishnan J, Lewis C, Neely D, Norreys P, O’Neill D, Pert G J, Ramsden S, Raucourt J P, Tallents G, Uhomoibhi J O 1992 Phys. Rev. Lett. 68 2917Google Scholar

    [14]

    He S T, Chunyu S T, Zhang Q R, He A, Shen H Z, Ni Y L, Yu S Y 1992 Phys. Rev. A 46 1610Google Scholar

    [15]

    安红海, 王琛, 方智恒, 熊俊, 孙今人, 王伟, 傅思祖, 乔秀梅, 郑无敌, 张国平 2011 物理学报 60 104207Google Scholar

    An H H, Wang C, Fang Z H, Xiong J, Sun J R, Wang W, Fu S Z, Qiao X M, Zheng W D, Zhang G P 2011 Acta Phys. Sin. 60 104207Google Scholar

    [16]

    Ceglio N M, Gaines D P, Stearns D G, Hawryluk A M 1989 Opt. Commun. 69 285Google Scholar

    [17]

    Rus B, Mocek T, Präg A R, Kozlová M, Jamelot G, Carillon A, Ros D, Joyeux D, Phalippou D 2002 Phys. Rev. A 66 063806Google Scholar

    [18]

    Rocca J J, Clark D P, Chilla J L A, Shlyaptsev V N 1996 Phys. Rev. Lett. 77 1476Google Scholar

    [19]

    Zhao Y P, Liu T, Zhang W H, Li W, Cui H Y 2016 Opt. Lett. 41 3779Google Scholar

    [20]

    Rus B, Carillon A, Dhez P, Jaegle´ P, Jamelot G, Klisnick A, Nantel M, Zeitoun P 1997 Phys. Rev. A 55 3858Google Scholar

    [21]

    Zhao Y P, Liu T, Jiang S, Cui H Y, Ding Y J, Li L 2016 Appl. Phys. B 122 107

  • 图 1  双程放大实验反射镜位置示意图

    Figure 1.  Schematic diagram of position of mirror in double-pass amplification.

    图 2  单程放大和双程放大输出脉冲波形 (a)单程放大输出; (b)双程放大输出

    Figure 2.  The pulse waveform of single-pass amplification and double-pass amplification output: (a) Single-pass amplification output; (b) double-pass amplification output.

    图 3  毛细管径向上CCD图像 (a)单程放大强度图像; (b)双程放大强度图像

    Figure 3.  CCD image in capillary radius: (a) Intensity image of single-pass amplification; (b) intensity image of double-pass amplification.

    图 4  毛细管径向上激光束散角 (a) 单程放大的束散角; (b) 双程放大的束散角

    Figure 4.  Laser divergence angle in capillary radius: (a) Divergence angle of the single-pass amplification; (b) divergence angle of the double-pass amplification.

    图 5  69.8 nm激光的增益系数随时间的变化

    Figure 5.  Gain coefficient as a function of time for 69.8 nm laser.

    图 6  69.8 nm激光峰值处的增益系数在空间上的分布情况

    Figure 6.  Gain coefficient as a function of angle in the spatial distribution for 69.8 nm laser peak.

    表 1  单程放大与双程放大尖峰位置处激光强度

    Table 1.  The peak position laser intensity of single-pass amplification and double-pass amplification.

    尖峰位置/mrad −1.41 −0.92 −0.49 0 0.25 0.68 1.23
    单程放大强度/arb.units 2345 4525 6708 15712 9964 7076 7017
    双程放大强度/arb.units 55844 56762 56128 51205 54803 50772 44720
    增长倍数 23.8 12.5 8.4 3.3 5.5 7.2 6.4
    DownLoad: CSV
  • [1]

    Carbajo S, Howlett I D, Brizuela F, Buchanan K S, Marconi M C 2012 Opt. Lett. 37 2994Google Scholar

    [2]

    Nejdl J, Howlett I D, Carlton D, Anderson E H, Chao W, Marconi M C, Rocca J J, Menoni C S 2015 IEEE Photon. J. 7 1

    [3]

    Rocca J J, Shlyaptsev V, Tomasel F G, Cortazar O D, Hartshorn D, Chilla J L 1994 Phys. Rev. Lett. 73 2192Google Scholar

    [4]

    Zhao Y P, Jiang S, Xie Y, Yang D W, Teng S P, Chen D Y, Wang Q 2011 Opt. Lett. 36 3458Google Scholar

    [5]

    Frati M, Seminario M, Rocca J J 2000 Opt. Lett. 25 1022Google Scholar

    [6]

    Tomasel F G, Rocca J J, Shlyaptsev V N, Macchietto C D 1997 Phys. Rev. A 55 1437Google Scholar

    [7]

    Elton R C, Datla R U, Roberts J R, Bhatia A K 1989 Phys. Rev. A 40 4142Google Scholar

    [8]

    Bernstein E R, Dong F, Guo Y Q, Shin J W, Heinbuch S, Rocca J J 2016 X-Ray Laser (Switzerland: Springer) p359

    [9]

    Menoni C S, Nejdl J, Monserud N, Howleet I D, Carlton D, Anderson E H, Chao W, Marconi M C, Rocca J J 2016 X-Ray Laser 2014 (Switzerland: Springer) p259

    [10]

    Suckewer S, Skinner C H, Milchberg H, Keane C, Voorhee D 1985 Phys. Rev. Lett. 55 1753Google Scholar

    [11]

    Ceglio N M, Gaines D P, Trebes J E, London R A, Stearns D G 1988 Appl. Opt. 27 5022Google Scholar

    [12]

    Murai K, Yuan G, Kodama R, Daido H, Kato Y, Niibe M, Miyake A, Tsukamoto M, Fukuda Y, Neely D, Macphee A G 1994 Jpn. J. Appl. Phys. 33 L600Google Scholar

    [13]

    Carillon A, Chen H Z, Dhez P, Dwivedi L, Jacoby J, Jaegle P, Jamelot G, Zhang J, Key M H, Kidd A, Klisnick A, Kodama R, Krishnan J, Lewis C, Neely D, Norreys P, O’Neill D, Pert G J, Ramsden S, Raucourt J P, Tallents G, Uhomoibhi J O 1992 Phys. Rev. Lett. 68 2917Google Scholar

    [14]

    He S T, Chunyu S T, Zhang Q R, He A, Shen H Z, Ni Y L, Yu S Y 1992 Phys. Rev. A 46 1610Google Scholar

    [15]

    安红海, 王琛, 方智恒, 熊俊, 孙今人, 王伟, 傅思祖, 乔秀梅, 郑无敌, 张国平 2011 物理学报 60 104207Google Scholar

    An H H, Wang C, Fang Z H, Xiong J, Sun J R, Wang W, Fu S Z, Qiao X M, Zheng W D, Zhang G P 2011 Acta Phys. Sin. 60 104207Google Scholar

    [16]

    Ceglio N M, Gaines D P, Stearns D G, Hawryluk A M 1989 Opt. Commun. 69 285Google Scholar

    [17]

    Rus B, Mocek T, Präg A R, Kozlová M, Jamelot G, Carillon A, Ros D, Joyeux D, Phalippou D 2002 Phys. Rev. A 66 063806Google Scholar

    [18]

    Rocca J J, Clark D P, Chilla J L A, Shlyaptsev V N 1996 Phys. Rev. Lett. 77 1476Google Scholar

    [19]

    Zhao Y P, Liu T, Zhang W H, Li W, Cui H Y 2016 Opt. Lett. 41 3779Google Scholar

    [20]

    Rus B, Carillon A, Dhez P, Jaegle´ P, Jamelot G, Klisnick A, Nantel M, Zeitoun P 1997 Phys. Rev. A 55 3858Google Scholar

    [21]

    Zhao Y P, Liu T, Jiang S, Cui H Y, Ding Y J, Li L 2016 Appl. Phys. B 122 107

  • [1] Zhao Yue-Qi, Cui Pei-Lin, Li Jian-Long, Li Bo-Yuan, Zhu Xin-Zhe, Chen Min, Liu Zhen-Yu. Simulation study on gas flow in curved capillary used in laser wakefield acceleration. Acta Physica Sinica, 2023, 72(18): 184701. doi: 10.7498/aps.72.20230893
    [2] Shi Zhi-Qi, He Xiao, Liu Lin, Chen De-Hua, Wang Xiu-Ming. Elastic wave propagation characteristics in unsaturated double-porosity medium under capillary pressure. Acta Physica Sinica, 2023, 72(6): 069101. doi: 10.7498/aps.72.20222063
    [3] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [4] Wang Ya-Nan, Ren Lin-Yuan, Ding Wei-Dong, Sun An-Bang, Geng Jin-Yue. Influence of cavity configuration parameters on discharge characteristics of capillary discharge based pulsed plasma thruster. Acta Physica Sinica, 2021, 70(23): 235204. doi: 10.7498/aps.70.20211198
    [5] Chen Ying, Xie Jin-Chao, Zhou Xin-De, Zhang Can, Yang Hui, Li Shao-Hua. Semi-closed T-shaped-disk waveguide filter based on surface-plasmon-induced transparency. Acta Physica Sinica, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [6] Lü Yue-Lan, Yin Xiang-Bao, Sun Wei-Min, Liu Yong-Jun, Yuan Li-Bo. Laser emission characteristics of the capillary of dye-doped liquid crystal. Acta Physica Sinica, 2018, 67(4): 044204. doi: 10.7498/aps.67.20171844
    [7] Liu Tao, Zhao Yong-Peng, Ding Yu-Jie, Li Xiao-Qiang, Cui Huai-Yu, Jiang Shan. Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2017, 66(15): 155201. doi: 10.7498/aps.66.155201
    [8] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [9] Zhao Yong-Peng, Xu Qiang, Xiao De-Long, Ding Ning, Xie Yao, Li Qi, Wang Qi. Time behavior and optimum conditions for the Xe gas extreme ultraviolet source. Acta Physica Sinica, 2013, 62(24): 245204. doi: 10.7498/aps.62.245204
    [10] Qiu Wei, Lü Pin, Ma Ying-Chi, Xu Xiao-Juan, Liu Dian, Zhang Cheng-Hua. The research on saturation of fast light in homogeneously broaden materials with gain. Acta Physica Sinica, 2012, 61(10): 104209. doi: 10.7498/aps.61.104209
    [11] Gu Yu-Qiu, Ma Zhan-Nan, Zheng Wu-Di, Wang Xiao-Fang, Wu Yu-Chi, Zhu Bin, Dong Ke-Gong, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Zhang Bao-Han, Jiao Chun-Ye, Wen Xian-Lun, Zang Hua-Ping, Yu Jin-Qing, Wei Lai. Density measurement and MHD simulation ofgas-filled capillary discharge waveguide. Acta Physica Sinica, 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [12] An Hong-Hai, Wang Chen, Fang Zhi-Heng, Xiong Jun, Sun Jin-Ren, Wang Wei, Fu Si-Zu, Qiao Xiu-Mei, Zheng Wu-Di, Zhang Guo-Ping. Output intensity of Ne-like Ge soft X-ray laser with double-pass amplification. Acta Physica Sinica, 2011, 60(10): 104207. doi: 10.7498/aps.60.104207
    [13] Shen Yun, Fan Ding-Huan, Fu Ji-Wu, Yu Guo-Ping. Theoretical research on optical properties of gain-assisted plasmonic coupled resonator optical waveguides. Acta Physica Sinica, 2011, 60(11): 117302. doi: 10.7498/aps.60.117302
    [14] Huang Wen-Tong, Li Shou-Zhe, Wang De-Zhen, Ma Teng-Cai. Characteristics of the plasma discharge generated in dielectric capillary at atmospheric pressure. Acta Physica Sinica, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [15] Chen Fang, Zeng Jian-Hua, Zhou Jian-Ying. Small signal gain characteristics of periodically arranged resonant amplifying media. Acta Physica Sinica, 2007, 56(7): 4175-4179. doi: 10.7498/aps.56.4175
    [16] Sun Jiao, Zhang Jia-Liang, Wang De-Zhen, Ma Teng-Cai. A novel cold plasma jet generated by capillary atmospheric dielectric barrier discharge. Acta Physica Sinica, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [17] Chen Bao-Zhen, Huang Zu-Qia. Efficiency of the third-order harmonic in gas-filled capillary driven by fs laser pulses. Acta Physica Sinica, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [18] Zhao Yong-Peng, Cheng Yuan-Li, Wang Qi, Hayashi Yasushi, Hotta Eiki. The lasing time of soft x-ray laser pumped by capillary discharge. Acta Physica Sinica, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [19] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [20] Chen Bao-Zhen, Huang Zu-Qia. Theoretical description of four-wave mixing of femtosecond pulses in gas-filled capillary*. Acta Physica Sinica, 2004, 53(12): 4218-4223. doi: 10.7498/aps.53.4218
Metrics
  • Abstract views:  5307
  • PDF Downloads:  25
  • Cited By: 0
Publishing process
  • Received Date:  30 August 2018
  • Accepted Date:  19 November 2018
  • Available Online:  01 January 2019
  • Published Online:  20 January 2019

/

返回文章
返回