Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Total ionizing dose effects of γ and X-rays on 55 nm silicon-oxide-nitride-oxide-silicon single flash memory cell

Cao Yang Xi Kai Xu Yan-Nan Li Mei Li Bo Bi Jin-Shun Liu Ming

Citation:

Total ionizing dose effects of γ and X-rays on 55 nm silicon-oxide-nitride-oxide-silicon single flash memory cell

Cao Yang, Xi Kai, Xu Yan-Nan, Li Mei, Li Bo, Bi Jin-Shun, Liu Ming
PDF
HTML
Get Citation
  • The total ionizing dose (TID) effects on 55 nm SONOS flash cell, caused by 60Co-γ ray and 10 keV X-ray radiation source, are systematically investigated in this paper. The degradation of electrical characteristics is discussed while the underlying physical mechanism is analyzed. The drift of I-V characteristic curve, the degradation of memory window, and the increase of stand-by current are observed after TID irradiation separately by the two radiation sources. The data retention capability is also affected by the TID irradiation. The I-Vg curve of the programmed single flash cell significantly drifts towards the negative direction after TID irradiation, while the negative drift of erased state is much slower. Referring to the erased state, the drift directions of Id-Vg curves for γ- and X-ray radiation source are obviously different. The physical mechanism of irradiation damage in a 55 nm SONOS single flash cell is discussed in detail by the energy band theory and TCAD simulations. The storage charge loss in silicon nitride layer, the charge accumulation, and the generation of interface states all together lead to the degradation of threshold voltage and stand-by current after TID irradiation. Another cause for the increase of stand-by current is the positive trapped charges in the isolated oxide induced by irradiation, which leads to the generation of leakage paths. Significant dose enhancement effect of X-ray irradiation is observed in this paper. Device model of memory transistor c is established while the dose enhancement effect of X-rays is investigated by Geant 4 tool. The high-Z materials above the poly-silicon gate lead to the dose enhancement effect of X-rays’ irradiation, which results in the higher degradation. The density of electron-hole pairs produced by irradiation in W layer is much higher than in Cu layer. In particular, W layer is a critical factor regardless of the thickness, which can be obviously observed in the simulation.
      Corresponding author: Bi Jin-Shun, bijinshun@ime.ac.cn
    [1]

    Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283Google Scholar

    [2]

    Houdt J V 2011 Curr. Appl. Phys. 11 e21Google Scholar

    [3]

    Li M, Bi J S, Xu Y N, Li B, Xi K, Wang H B, Liu J, Li J, Ji L L, Liu M 2018 Chin. Phys. Lett. 35 078502Google Scholar

    [4]

    Takeuchi H, King T J 2003 IEEE Electr. Device Lett. 24 309Google Scholar

    [5]

    Cellere G, Paccagnella A, Lora S, Pozza A, Tao G 2004 IEEE Trans. Nucl. Sci. 51 2912Google Scholar

    [6]

    Cellere G, Paccagnella A, Visconti A, Bonanomi M, Candelori A 2006 IEEE Trans. Nucl. Sci. 52 2372Google Scholar

    [7]

    Oldham T R, Mclean F B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [8]

    Bi J S, Han Z S, Zhang E X, Mccurdy M W, Reed R A, Schrimpf R D, Fleetwood D M, Alles M L, Weller R A, Linten D, Jurczak M, Fantini A 2013 IEEE Trans. Nucl. Sci. 60 4540Google Scholar

    [9]

    Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706Google Scholar

    [10]

    Wang Z, Liu C, Ma Y, Wu Z, Wang Y 2015 IEEE Trans. Nucl. Sci. 62 527Google Scholar

    [11]

    Bi J S, Xi K, Li B, Wang H B, Ji L L 2018 Chin. Phys. B 27 098501Google Scholar

    [12]

    Oldham T R, Chen D, Friendlich M, Carts M A, Seidleck C M, LaBel K A 2011 IEEE Trans. Nucl. Sci. 58 2904Google Scholar

    [13]

    Petrov A, Vasil’ev A, Ulanova A, Chumakov A, Nikiforov A 2014 Central Eur. J. Phys. 12 725Google Scholar

    [14]

    Duncan A R, Gadlage M J, Roach A H, Kay M J 2016 IEEE Trans. Nucl. Sci. 63 1276Google Scholar

    [15]

    Bagatin M, Gerardin S, Paccagnella A, Visconti A, Bonanomi M 2015 IEEE Trans. Nucl. Sci. 62 2815Google Scholar

    [16]

    Snyder E S, McWhorter P J, Dellin T A, Sweetman J D 1989 IEEE Trans. Nucl. Sci. 36 2131Google Scholar

    [17]

    Puchner H, Ruths P, Prabhakar V, Kouznetsov I, Geha S 2014 IEEE Trans. Nucl. Sci. 61 3005Google Scholar

    [18]

    Adams D A, Mavisz D, Murray J R, White M H 2002 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542) Big Sky, MT, USA, March 10−17, 2001 p2295

    [19]

    Adams D A, Smith J T, Murray J R, White M H, Wrazien S 2005 2004 Proceedings IEEE Computational Systems Bioinformatics Conference Stanford, CA, USA, November 17, 2004 p36

    [20]

    Qiao F, Yu X, Pan L, Ma H, Wu D, Xu J 2012 19th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits Singapore, July 2−6, 2012 p1

    [21]

    Bassi S, Pattanaik M 2014 18th International Symposium on VLSI Design and Test Coimbatore, India, July 16−18, 2014 p1

    [22]

    Qiao F, Pan L, Blomme P, Arreghini A, Liu L 2014 IEEE Trans. Nucl. Sci. 61 955Google Scholar

    [23]

    谯凤英 2013 博士学位论文 (北京: 清华大学)

    Qiao F Y 2013 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [24]

    Yoshii I, Hama K, Maeguchi K 1989 IEEE Trans. Nucl. Sci. 36 2124Google Scholar

    [25]

    李蕾蕾, 于宗光, 肖志强, 周昕杰 2011 物理学报 60 098502Google Scholar

    Li L L, Yu Z G, Xiao Z Q, Zhou X J 2011 Acta Phys. Sin. 60 098502Google Scholar

    [26]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X 2011 Microelectron. Reliab. 51 1295Google Scholar

    [27]

    Ning B X, Zhang Z X, Liu Z L, Hu Z Y, Chen M 2012 Microelectron. Reliab. 52 130Google Scholar

    [28]

    刘张李, 胡志远, 张正选, 邵华, 宁冰旭 2011 物理学报 60 116103Google Scholar

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X 2011 Acta Phys. Sin. 60 116103Google Scholar

    [29]

    Pei Y P, Huang R, An X, Liu W, Tian J Q 2012 J. Appl. Phys. 51 1295

    [30]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103Google Scholar

    [31]

    陈盘训, 周开明 1997 物理 12 725Google Scholar

    Chen P X, Zhou K M 1997 Physics 12 725Google Scholar

    [32]

    吴正新, 何承发, 陆妩, 郭旗, 艾尔肯·阿不列木 2013 核技术 36 060201

    Wu Z X, He C F, Lu W, Guo Q, Aierken A 2013 Nucl. Technol. 36 060201

    [33]

    郭红霞, 韩福斌, 陈雨生, 周辉, 贺朝会 2002 核技术 25 811Google Scholar

    Guo H X, Han F B, Chen Y S, Zhou H, He C H 2002 Nucl. Technol. 25 811Google Scholar

    [34]

    卓俊, 黄流兴, 牛胜利, 朱金辉 2015 现代应用物理 6 168Google Scholar

    Zhuo J, Huang L X, Niu S L, Zhu J H 2015 Mod. Appl. Phys. 6 168Google Scholar

    [35]

    Allison J, Amako K, Apostolakis J, Arce P, Asai M 2016 Nucl. Instrum. Meth. A 835 186Google Scholar

    [36]

    Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [37]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H 2003 Nucl. Instrum. Meth. A 506 250Google Scholar

  • 图 1  (a) SONOS结构示意图; (b) 2 × 2位的闪存单元微阵列及其TEM横截面

    Figure 1.  (a) Diagram of SONOS structure; (b) 2 × 2 bit flash cells mini-array and the TEM cross-section.

    图 2  60Co-γ射线总剂量辐照后, 编程态和擦除态的SONOS闪存单元的I-V特性变化规律

    Figure 2.  I-V characteristics of the programmed and erased single SONOS flash cell after total ionizing dose irradiation by 60Co-γ rays.

    图 3  编程态和擦除态闪存单元的(a)阈值电压和归一化的存储窗口, 以及(b)静态电流随60Co-γ射线总剂量辐照的变化规律

    Figure 3.  (a) Threshold voltage and normalized memory window, and (b) stand-by current of the programmed and erased single flash cell after total ionizing dose irradiation by 60Co-γ rays.

    图 4  辐射源为10 keV X射线下编程态和擦除态闪存单元的I-V特性变化规律

    Figure 4.  I-V characteristics of the programmed and erased single flash cell after total ionizing dose irradiation by 10 keV X-rays.

    图 5  编程态和擦除态闪存单元的(a)阈值电压和归一化的存储窗口, 以及(b)静态电流随10 keV X射线总剂量辐照的变化规律

    Figure 5.  (a) Threshold voltage and normalized memory window, and (b) stand-by current of the programmed and erased single flash cell after total ionizing dose irradiation by 10 keV X-rays.

    图 6  在Sentaurus TCAD中构建MT的SONOS结构, 其主要物理参数来自于图1中的TEM截面信息

    Figure 6.  Diagram of MT’s SONOS structure constructed in Sentaurus TCAD tool, with main physical parameters derived from the cross-section TEM information in Fig. 1.

    图 7  基于图6获得编程态SONOS器件能带图, 并标示出其电离总剂量效应的子物理过程

    Figure 7.  Energy band diagram of programmed SONOS device based on Fig. 6, which illustrates sub-physical processes of total ionizing dose effect.

    图 8  辐射源为10 keV X射线下编程态和擦除态闪存单元的亚阈值斜率变化规律

    Figure 8.  Sub-threshold slopes of the programmed and erased single flash cell after total ionizing dose irradiation by 10 keV X-rays.

    图 9  (a)闪存单元中MT的布局简图和沟道边缘的漏电路径; (b)沿虚线AA', MT可等效成一个主晶体管与两个寄生晶体管的并联, MT靠近隔离氧化物处反型层的形成导致寄生电流产生

    Figure 9.  (a) MT top view with the leakage paths at the channel edges; (b) cross-section of MT along line AA' indicates that MT can be considered as a main transistor in parallel with two parasitic transistors. The formation of the inverse layer along the isolated oxide leads to the generation of parasitic currents.

    图 10  Geant 4中建立的MT器件模型

    Figure 10.  MT device model established by Geant 4 tool.

    图 11  Geant 4工具模拟高Z材料与X射线剂量增强效应的关系

    Figure 11.  Dose enhancement effect of X-rays on high-Z materials, simulated by Geant 4 tool.

    表 1  SONOS闪存单元的操作条件

    Table 1.  Operation conditions of the SONOS single flash cell.

    操作VWLS/Vg/VVWL/VVBL/Vd/VVSL/V脉冲宽度/ms
    PGM9.50001.5
    ERS−9.50002.5
    READ−3—32.50.60
    DownLoad: CSV
  • [1]

    Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283Google Scholar

    [2]

    Houdt J V 2011 Curr. Appl. Phys. 11 e21Google Scholar

    [3]

    Li M, Bi J S, Xu Y N, Li B, Xi K, Wang H B, Liu J, Li J, Ji L L, Liu M 2018 Chin. Phys. Lett. 35 078502Google Scholar

    [4]

    Takeuchi H, King T J 2003 IEEE Electr. Device Lett. 24 309Google Scholar

    [5]

    Cellere G, Paccagnella A, Lora S, Pozza A, Tao G 2004 IEEE Trans. Nucl. Sci. 51 2912Google Scholar

    [6]

    Cellere G, Paccagnella A, Visconti A, Bonanomi M, Candelori A 2006 IEEE Trans. Nucl. Sci. 52 2372Google Scholar

    [7]

    Oldham T R, Mclean F B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [8]

    Bi J S, Han Z S, Zhang E X, Mccurdy M W, Reed R A, Schrimpf R D, Fleetwood D M, Alles M L, Weller R A, Linten D, Jurczak M, Fantini A 2013 IEEE Trans. Nucl. Sci. 60 4540Google Scholar

    [9]

    Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706Google Scholar

    [10]

    Wang Z, Liu C, Ma Y, Wu Z, Wang Y 2015 IEEE Trans. Nucl. Sci. 62 527Google Scholar

    [11]

    Bi J S, Xi K, Li B, Wang H B, Ji L L 2018 Chin. Phys. B 27 098501Google Scholar

    [12]

    Oldham T R, Chen D, Friendlich M, Carts M A, Seidleck C M, LaBel K A 2011 IEEE Trans. Nucl. Sci. 58 2904Google Scholar

    [13]

    Petrov A, Vasil’ev A, Ulanova A, Chumakov A, Nikiforov A 2014 Central Eur. J. Phys. 12 725Google Scholar

    [14]

    Duncan A R, Gadlage M J, Roach A H, Kay M J 2016 IEEE Trans. Nucl. Sci. 63 1276Google Scholar

    [15]

    Bagatin M, Gerardin S, Paccagnella A, Visconti A, Bonanomi M 2015 IEEE Trans. Nucl. Sci. 62 2815Google Scholar

    [16]

    Snyder E S, McWhorter P J, Dellin T A, Sweetman J D 1989 IEEE Trans. Nucl. Sci. 36 2131Google Scholar

    [17]

    Puchner H, Ruths P, Prabhakar V, Kouznetsov I, Geha S 2014 IEEE Trans. Nucl. Sci. 61 3005Google Scholar

    [18]

    Adams D A, Mavisz D, Murray J R, White M H 2002 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542) Big Sky, MT, USA, March 10−17, 2001 p2295

    [19]

    Adams D A, Smith J T, Murray J R, White M H, Wrazien S 2005 2004 Proceedings IEEE Computational Systems Bioinformatics Conference Stanford, CA, USA, November 17, 2004 p36

    [20]

    Qiao F, Yu X, Pan L, Ma H, Wu D, Xu J 2012 19th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits Singapore, July 2−6, 2012 p1

    [21]

    Bassi S, Pattanaik M 2014 18th International Symposium on VLSI Design and Test Coimbatore, India, July 16−18, 2014 p1

    [22]

    Qiao F, Pan L, Blomme P, Arreghini A, Liu L 2014 IEEE Trans. Nucl. Sci. 61 955Google Scholar

    [23]

    谯凤英 2013 博士学位论文 (北京: 清华大学)

    Qiao F Y 2013 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [24]

    Yoshii I, Hama K, Maeguchi K 1989 IEEE Trans. Nucl. Sci. 36 2124Google Scholar

    [25]

    李蕾蕾, 于宗光, 肖志强, 周昕杰 2011 物理学报 60 098502Google Scholar

    Li L L, Yu Z G, Xiao Z Q, Zhou X J 2011 Acta Phys. Sin. 60 098502Google Scholar

    [26]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X 2011 Microelectron. Reliab. 51 1295Google Scholar

    [27]

    Ning B X, Zhang Z X, Liu Z L, Hu Z Y, Chen M 2012 Microelectron. Reliab. 52 130Google Scholar

    [28]

    刘张李, 胡志远, 张正选, 邵华, 宁冰旭 2011 物理学报 60 116103Google Scholar

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X 2011 Acta Phys. Sin. 60 116103Google Scholar

    [29]

    Pei Y P, Huang R, An X, Liu W, Tian J Q 2012 J. Appl. Phys. 51 1295

    [30]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103Google Scholar

    [31]

    陈盘训, 周开明 1997 物理 12 725Google Scholar

    Chen P X, Zhou K M 1997 Physics 12 725Google Scholar

    [32]

    吴正新, 何承发, 陆妩, 郭旗, 艾尔肯·阿不列木 2013 核技术 36 060201

    Wu Z X, He C F, Lu W, Guo Q, Aierken A 2013 Nucl. Technol. 36 060201

    [33]

    郭红霞, 韩福斌, 陈雨生, 周辉, 贺朝会 2002 核技术 25 811Google Scholar

    Guo H X, Han F B, Chen Y S, Zhou H, He C H 2002 Nucl. Technol. 25 811Google Scholar

    [34]

    卓俊, 黄流兴, 牛胜利, 朱金辉 2015 现代应用物理 6 168Google Scholar

    Zhuo J, Huang L X, Niu S L, Zhu J H 2015 Mod. Appl. Phys. 6 168Google Scholar

    [35]

    Allison J, Amako K, Apostolakis J, Arce P, Asai M 2016 Nucl. Instrum. Meth. A 835 186Google Scholar

    [36]

    Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [37]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H 2003 Nucl. Instrum. Meth. A 506 250Google Scholar

Metrics
  • Abstract views:  7045
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  05 September 2018
  • Accepted Date:  18 December 2018
  • Available Online:  01 February 2019
  • Published Online:  05 February 2019

/

返回文章
返回