Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of 100-MeV proton beam spreading scheme with double-ring double scattering method

Han Jin-Hua Guo Gang Liu Jian-Cheng Sui Li Kong Fu-Quan Xiao Shu-Yan Qin Ying-Can Zhang Yan-Wen

Citation:

Design of 100-MeV proton beam spreading scheme with double-ring double scattering method

Han Jin-Hua, Guo Gang, Liu Jian-Cheng, Sui Li, Kong Fu-Quan, Xiao Shu-Yan, Qin Ying-Can, Zhang Yan-Wen
PDF
HTML
Get Citation
  • To obtain a large uniform beam field for proton single event effect (SEE) experiments, the double-ring double scattering method (DDSM) is employed for spreading the 100 MeV proton beam provided by the 100 MeV proton cyclotron at China Institute of Atomic Energy. With the Geant 4 simulations, the fundamentals of the DDSM are further explored, the achieved effect of our DDSM scheme design is presented, and the influences of some possible factors in practice on the produced beam field are discussed. We find that the the outer part of the second scatter plays an important role in enlarging the area of the uniform field and improving its uniformity. We also find that the first scatter and the inner part of the second scatter play a decisive role in determining the proton flux of the uniform area. The scattering between the spread proton beam and the accelerator tube behind the second scatter damages the uniformity and leads the energy of the produced beam field to straggle. Therefore, the tube should be made as short as possible. The size of the initial beam spot on the first scatter affects the produced beam field to some extent. The spot should be focused as much as possible in a circle with a radius of 0.5 cm. At a larger distance, a larger uniform field can be produced due to the spreading of the proton beam along the space. The decrease in the incident proton energy causes the flux and uniformity to decrease, and also leads the energy loss to increase and the energy of the produced proton beam field to straggle. Using our DDSM schematic design, the simulations show that an 8-cm-diameter beam field with a uniformity of ±1.89% can be produced at a distance of 2.4 m, thereby meeting the need for an SEE experiment of a device-level sample, and that a 20-cm-radius beam field with a uniformity of ±5.32% can be created at a distance of 5.0 m, thereby meeting the need for an SEE experiment of a system-level sample of comparable size. By taking into consideration the uniformity and energy straggling, our design is basically applicable to the protons in the 70−100 MeV energy region that the accelerator can provide directly.
      Corresponding author: Guo Gang, ggg@ciae.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 1690044, 11575293) and the Presidential Foundation of China Institute of Atomic Energy (Grant No. 11YZ201815).
    [1]

    赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞 2015 物理学报 64 178501Google Scholar

    Zhao W, Guo X Q, Chen W, Qiu M T, Luo Y H, Wang Z M, Guo H X 2015 Acta Phys. Sin. 64 178501Google Scholar

    [2]

    Mcmahan M A, Blackmore E, Cascio E W, Castaneda C, Przewoski B, Eisen H 2008 Proc. IEEE Radiation Effects Data Workshop Tucson, Arizona, American, 2008 p135

    [3]

    Hajdas W, Burri F, Eggle C, Harboe-Sorensen R, Marino R 2002 Proc. IEEE Radiation Effects Data Workshop Phoenix, Arizona, American, 2002 p160

    [4]

    Blackmore E W 2000 Proc. IEEE Radiation Effects Data Workshop Reno Nevada, American, 2000 p1

    [5]

    Przewoski B, Rinckel T, Manwaring W, Broxton G, Chipara M, Ellis T, Hall E R, Kinser A, Foster C C, Murray K M 2004 Proc. IEEE Radiation Effects Data Workshop Atlanta, Georgia, American, 2004 p145

    [6]

    鞠志萍 2009 博士学位论文(广州: 中山大学)

    Ju Zh P 2009 Ph. D. Dissertation (Guangzhou: Sun Yat-sen University) (in Chinese)

    [7]

    余建国, 郁庆长 1997 高能物理与核物理 21 851

    Yu J G, Yu Q C 1997 High Energy Physics and Nuclear Physics 21 851

    [8]

    鞠志萍, 曹午飞, 刘小伟 2009 物理学报 58 174Google Scholar

    Ju Z P, Cao W F, Liu X W 2009 Acta Phys. Sin. 58 174Google Scholar

    [9]

    Koehler A M, Schnelder R J, Sisterson J M 1977 Med. Phys. 4 297Google Scholar

    [10]

    鞠志萍, 曹午飞, 刘小伟 2010 物理学报 59 199Google Scholar

    Ju Z P, Cao W F, Liu X W 2010 Acta Phys. Sin. 59 199Google Scholar

    [11]

    Grusell E, Montelius A, Brahme A, Rikner G, Russell K 1994 Phys. Med. Biol. 39 2201Google Scholar

    [12]

    Takada Y 1994 Jpn. J. Appl. Phys. 33 353Google Scholar

    [13]

    Himukai T, Furukawa T, Takeshita E, Inaniwa T, Mizushima K, Katagiri K, Takada Y 2011 Nucl. Instr. Meth. B 269 2891Google Scholar

    [14]

    Highland V L 1975 Nucl. Instr. Meth. 129 497Google Scholar

    [15]

    Lynch G R, Dahl O I 1991 Nucl. Instr. Meth. B 58 6Google Scholar

    [16]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instr. Meth. B 268 1818Google Scholar

    [17]

    Agostinelli S, Allisonet J, Amako K, et al. 2003 Nucl. Instr. Meth. A 506 250Google Scholar

    [18]

    Geant4 User’s Guide for Application Developers, available online at: http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/fo/BookForAppliDev.pdf [2018-9-1]

    [19]

    Gottschalk B, Koehler A M, Schneider R J, Sisterson J M, Wagner M S 1993 Nucl. Instr. Meth. 74 467Google Scholar

    [20]

    丁富荣, 班勇, 夏宗璜 2004 辐射物理 (北京: 北京大学出版社) 第10页

    Ding F R, Ban Y, Xia Z H 2004 Radiation Physics (Beijing: Peking University Press) p10 (in Chinese)

    [21]

    复旦大学, 清华大学, 北京大学 1985 原子核物理实验方法(上册) (第二版)(北京: 原子能出版社) 第57—60页

    Fudan University, Tsinghua University, Peking University 1985 Nuclear Physics Experimental Methods (Part I) (2nd edn.) (Beijing: Atomic Energy Press) pp57–60 (in Chinese)

  • 图 1  双环双散射体结构示意图

    Figure 1.  Arrangement of scatterers of the dual-ring double scattering method (DDSM).

    图 2  以Pb, Ta, Cu, Al四种材料做第一散射体时, 100 MeV质子在其中损失的能量$\Delta {E_1}$与束流在DUT位置形成的高斯分布的${1 / {\rm e}}$半径${R_1}$之间的关系

    Figure 2.  Relations between the 1/e radii of the produced Gaussian distributions at the DUT position and the energy losses for the 100 MeV protons with the Pb, Ta, Cu and Al foils as the first scatters.

    图 3  158.6 MeV质子在Al (a)、Pb (b)中的散射角半高宽实验测量结果与Geant4模拟结果的对比

    Figure 3.  Comparison between the full widths at half maximum of the scattering angles of the 158.6 MeV protons in Al (a), Pb (b) from experiments and those from the Geant4 simulations.

    图 4  各散射体在均匀束流分布形成过程中所起的作用

    Figure 4.  Role of every scatter in producing a large uniform beam field.

    图 5  入射质子流强为1 nA时, 第二散射体之后采用0, 5, 50, 100, 150 cm长的管道时在DUT位置所产生的质子注量率分布(a)以及质子的平均能量和能散(b)

    Figure 5.  Flux distributions (a), average energy and energy straggling (b) of the protons in the produced beam fields at the DUT position with the 0, 5, 50, 100 and 150 cm accelerator tubes behind the second scatter for 1 nA incident proton beams.

    图 6  1 nA质子束流均匀打在第一散射体半径为0, 0.5, 1.0, 1.5 cm的圆形区域时在DUT位置所形成的束流分布

    Figure 6.  Flux distributions of the produced proton beam fields at the DUT position with 1 nA proton beams irradiating 0, 0.5, 1.0 and 1.5 cm radius spots uniformly on the first scatter.

    图 7  在DUT位置半径为$r$的圆形区域内产生的质子束流分布的均匀性与束流利用率

    Figure 7.  Uniformity of the produced beam field and efficiency of beam use within a circle with a radius of $r$ at the DUT position.

    图 8  1 nA质子束流在照射野形成距离$L$分别为2.3, 2.4, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 m时产生的不同束流分布

    Figure 8.  Flux distributions of the produced beam fields with different irradiation field formation distances of 2.3, 2.4, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 m for 1 nA proton beams.

    图 9  1 nA的能量分别为70, 80, 90, 100 MeV的质子在该设计方案中产生的束流分布

    Figure 9.  Flux distributions of the produced beam fields for 1 nA proton beams at 70, 80, 90 and 100 MeV in this DDSM schematic design.

  • [1]

    赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞 2015 物理学报 64 178501Google Scholar

    Zhao W, Guo X Q, Chen W, Qiu M T, Luo Y H, Wang Z M, Guo H X 2015 Acta Phys. Sin. 64 178501Google Scholar

    [2]

    Mcmahan M A, Blackmore E, Cascio E W, Castaneda C, Przewoski B, Eisen H 2008 Proc. IEEE Radiation Effects Data Workshop Tucson, Arizona, American, 2008 p135

    [3]

    Hajdas W, Burri F, Eggle C, Harboe-Sorensen R, Marino R 2002 Proc. IEEE Radiation Effects Data Workshop Phoenix, Arizona, American, 2002 p160

    [4]

    Blackmore E W 2000 Proc. IEEE Radiation Effects Data Workshop Reno Nevada, American, 2000 p1

    [5]

    Przewoski B, Rinckel T, Manwaring W, Broxton G, Chipara M, Ellis T, Hall E R, Kinser A, Foster C C, Murray K M 2004 Proc. IEEE Radiation Effects Data Workshop Atlanta, Georgia, American, 2004 p145

    [6]

    鞠志萍 2009 博士学位论文(广州: 中山大学)

    Ju Zh P 2009 Ph. D. Dissertation (Guangzhou: Sun Yat-sen University) (in Chinese)

    [7]

    余建国, 郁庆长 1997 高能物理与核物理 21 851

    Yu J G, Yu Q C 1997 High Energy Physics and Nuclear Physics 21 851

    [8]

    鞠志萍, 曹午飞, 刘小伟 2009 物理学报 58 174Google Scholar

    Ju Z P, Cao W F, Liu X W 2009 Acta Phys. Sin. 58 174Google Scholar

    [9]

    Koehler A M, Schnelder R J, Sisterson J M 1977 Med. Phys. 4 297Google Scholar

    [10]

    鞠志萍, 曹午飞, 刘小伟 2010 物理学报 59 199Google Scholar

    Ju Z P, Cao W F, Liu X W 2010 Acta Phys. Sin. 59 199Google Scholar

    [11]

    Grusell E, Montelius A, Brahme A, Rikner G, Russell K 1994 Phys. Med. Biol. 39 2201Google Scholar

    [12]

    Takada Y 1994 Jpn. J. Appl. Phys. 33 353Google Scholar

    [13]

    Himukai T, Furukawa T, Takeshita E, Inaniwa T, Mizushima K, Katagiri K, Takada Y 2011 Nucl. Instr. Meth. B 269 2891Google Scholar

    [14]

    Highland V L 1975 Nucl. Instr. Meth. 129 497Google Scholar

    [15]

    Lynch G R, Dahl O I 1991 Nucl. Instr. Meth. B 58 6Google Scholar

    [16]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instr. Meth. B 268 1818Google Scholar

    [17]

    Agostinelli S, Allisonet J, Amako K, et al. 2003 Nucl. Instr. Meth. A 506 250Google Scholar

    [18]

    Geant4 User’s Guide for Application Developers, available online at: http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/fo/BookForAppliDev.pdf [2018-9-1]

    [19]

    Gottschalk B, Koehler A M, Schneider R J, Sisterson J M, Wagner M S 1993 Nucl. Instr. Meth. 74 467Google Scholar

    [20]

    丁富荣, 班勇, 夏宗璜 2004 辐射物理 (北京: 北京大学出版社) 第10页

    Ding F R, Ban Y, Xia Z H 2004 Radiation Physics (Beijing: Peking University Press) p10 (in Chinese)

    [21]

    复旦大学, 清华大学, 北京大学 1985 原子核物理实验方法(上册) (第二版)(北京: 原子能出版社) 第57—60页

    Fudan University, Tsinghua University, Peking University 1985 Nuclear Physics Experimental Methods (Part I) (2nd edn.) (Beijing: Atomic Energy Press) pp57–60 (in Chinese)

Metrics
  • Abstract views:  6065
  • PDF Downloads:  56
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2018
  • Accepted Date:  28 January 2019
  • Available Online:  01 March 2019
  • Published Online:  05 March 2019

/

返回文章
返回