Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of single-beam expanding scanning laser circumferential detection system parameters on detection capability

Zha Bing-Ting Yuan Hai-Lu Ma Shao-Jie Chen Guang-Song

Citation:

Influence of single-beam expanding scanning laser circumferential detection system parameters on detection capability

Zha Bing-Ting, Yuan Hai-Lu, Ma Shao-Jie, Chen Guang-Song
PDF
HTML
Get Citation
  • Aiming at the high requirement for pulse-repetition frequency of the existing single-beam synchronous scanning circumferential detection, which is difficult to use practically. The method of single-beam expanding scanning laser circumferential detection is proposed. Based on the principle of single-beam expanding scanning laser circumferential detection, the mode of scanning has an inherent defect of periodic detection blind area in the detection field. The method of one-way spreading laser line beam into fan-shaped beam is proposed. The analytical expression of the lowest scanning frequency and the pulse frequency are derived. Echo characteristics of cylindrical target and the section attenuation coefficient are analyzed. Mathematic model of cylindrical target echo power of pulsed expanding laser beam is established. The mathematical model of section attenuation coefficient of cylindrical object is established, and the variation of the section attenuation coefficient when the center line and the edge of the beam have different positions relative to the cylindrical target is analyzed. The expression of the position having the smallest section attenuation coefficient and the expression of largest angle between the adjacent pulse laser beams are obtained, then the influence of system parameters on the section attenuation coefficient is also discussed. The emphasis is placed on the influence of pulse frequency, beam angle and incidence angle on the ability to detect different diameter targets. As the laser pulse frequency increases, the detectable target diameter is smaller and the detection ability is stronger. Increasing the beam angle and lowering the laser incident angle are beneficial to reducing the minimum laser pulse frequency required to discover the target. The methods of calculating maximum beam angle and minimum pulse frequency under typical conditions of the detection system are presented. When the incident angles are ${\text{π}}/3$, ${\text{π}}/4$ and ${\text{π}}/6$, the maximum beam angle and the lowest pulse frequency are calculated for a cylindrical target with a diameter of 0.18 m at a detection distance of 6 m, the minimum pulse frequency decreases effectively after beam expansion. The results show that the pulse repetition frequency will be effectively reduced by slightly expanding the beam. This study may provide theoretical basis for designing and optimizing the single-beam pulsed laser circumferential detection.
      Corresponding author: Zha Bing-Ting, zhabingting@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51709147) and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 309171B8805, 30918012201).
    [1]

    杨雨川, 谭碧涛, 龙超, 陈力子, 张己化, 陈军燕 2013 红外与激光工程 42 3228Google Scholar

    Yang Y C, Tan B T, Long C, Cen L Z, Zhang J H, Chen J Y 2013 Infrared and Laser Engineering 42 3228Google Scholar

    [2]

    黄涛, 胡以华, 赵钢, 赵楠翔, 翟福琪, 吴永华 2011 红外与毫米波学报 30 179

    Huang T, Hu Y H, Zhao G, Zhao N X, Zhai F Q, Wu Y H 2011 J. Infrared Millim. Waves 30 179

    [3]

    赵楠翔, 胡以华, 雷武虎, 贺敏 2009 红外与激光工程 38 748Google Scholar

    Zhao N X, Hu Y H, Lei W H, He M 2009 Infrared and Laser Engineering 38 748Google Scholar

    [4]

    徐效文 2004 博士学位论文 (长春: 中国科学院研究生院)

    Xu X W 2004 Ph. D. Dissertation (Changchun: Graduate University of the Chinese Academy of Sciences)

    [5]

    李元, 李燕华, 李洛, 郭海超, 张彦梅, 温玉全 2015 兵工学报 36 2073Google Scholar

    Li Y, Li Y H, Li L, Guo H C, Zhang Y M, Wen Y Q 2015 Acta Armamentarii 36 2073Google Scholar

    [6]

    林永兵, 张国雄, 李真, 李杏华 2002 中国激光 11 1000Google Scholar

    Lin Y B, Zhang G X, Li Z, Li X H 2002 Chin. J. Lasers 11 1000Google Scholar

    [7]

    张伟, 张合, 陈勇, 张祥金, 徐孝彬 2017 物理学报 66 012901Google Scholar

    Zhang W, Zhang H, Chen Y, Zhang X J, Xu X B 2017 Acta Phys. Sin. 66 012901Google Scholar

    [8]

    张磊, 郭劲 2012 光学精密工程 20 789

    Zhang L, Guo J 2012 Optics Precis Eng. 20 789

    [9]

    赵延仲, 宋丰华, 孙华燕 2007 红外与激光工程 36 891Google Scholar

    Zhao Y Z, Song F H, Sun H Y 2007 Infrared and Laser Engineering 36 891Google Scholar

    [10]

    甘霖, 张合, 张祥金, 冯颖 2013 红外与激光工程 42 84Google Scholar

    Gan L, Zhang H, Zhang X J, Feng Y 2013 Infrared and Laser Engineering 42 84Google Scholar

    [11]

    谭亚运, 张合, 查冰婷 2015 强激光与粒子束 27 73

    Tan Y Y, Zhang H, Zha B T 2015 High Pow. Las. Part. Beams 27 73

    [12]

    查冰婷, 张合 2014 红外与激光工程 43 2081Google Scholar

    Zha B T, Zhang H 2014 Infrared and Laser Engineering 43 2081Google Scholar

    [13]

    徐孝彬, 张合 2016 中国激光 43 201

    Xu X B, Zhang H 2016 Chin. J. Lasers 43 201

    [14]

    寇添, 王海晏, 王芳, 陈闽, 徐强 2015 光学学报 35 211

    Kou T, Wang H Y, Wang F, Chen M, Xu Q 2015 Acta Opt. Sin. 35 211

    [15]

    张旭升, 郭亮, 黄勇, 罗志涛 2015 中国激光 42 20

    Zhang X S, Guo L, Huang Y, Luo Z T 2015 Chin. J. Lasers 42 20

    [16]

    Xu G, Zhang X Y, Su J, Li X T, Zheng A Q 2016 Appl. Opt. 55 2653Google Scholar

    [17]

    Steinvall O 2000 Appl. Opt. 39 4381Google Scholar

    [18]

    Cao T, Xiao A C, Wu L, Mao L G 2017 Comput. Geosci. 106 209Google Scholar

    [19]

    Krása J, Delle S D, Giuffreda E, Nassisi V 2015 Laser Part. Beams 33 601Google Scholar

    [20]

    马圆 2015 硕士学位论文 (南京: 南京理工大学)

    Ma Y 2015 M. S. Thesis (Nanjing: Nanjing University of Science and Technology)

    [21]

    Louis E 1964 Appl. Opt. 3 745Google Scholar

  • 图 1  单光束扩束扫描激光周视探测系统结构

    Figure 1.  The structure of a single beam expanding beam scanning laser periscope detection system.

    图 2  单光束脉冲激光周向扫描探测系统探测目标示意图[11]

    Figure 2.  Schematic diagram of detection target of single-beam pulsed laser circumferential scan detection system.

    图 3  沿x轴正方向脉冲光束视图

    Figure 3.  Pulse beam view in the positive direction of the x-axis.

    图 4  相邻脉冲激光束在面M上的投影

    Figure 4.  Projection of adjacent pulsed laser beam on plane M.

    图 5  发射激光束与投影图像几何关系

    Figure 5.  Geometrical relationship between the laser beam and the projected image.

    图 6  回波功率PrK(R), R, $\alpha$之间的关系 (a) ${\alpha _{\rm{t}}}={\text{π}}/6$; (b) ${\alpha _{\rm{t}}}={\text{π}}/4$; (c) ${\alpha _{\rm{t}}}={\text{π}}/3$

    Figure 6.  The echo power with different K(R), R and $\alpha$: (a) ${\alpha _{\rm{t}}}={\text{π}}/6$; (b) ${\alpha _{\rm{t}}}={\text{π}}/4$; (c) ${\alpha _{\rm{t}}}={\text{π}}/3$

    图 7  K(R)数学模型 (a)光束中心线位置示意图; (b)光束左边沿线与目标相交时K(R)模型; (c)光束左边沿线与目标相离时K(R)模型

    Figure 7.  Mathematical model of K(R): (a) The position of the center line of the beam; (b) the K(R) model when the left side of the beam intersects the target; (c) the K(R) model when the left side of the beam is separated from the target.

    图 8  K(R)与${\alpha _{\rm{t}}}$, ${\xi _1}$$\theta_{\rm{d}}$之间的关系 (a) ${\alpha _{\rm{t}}}$, $\theta_{\rm{d}}$K(R)的关系; (b) ${\alpha _{\rm{t}}}$, ${\xi _1}$$\theta_{\rm{d}}$K(R)的影响曲线

    Figure 8.  The relationship between K(R) and ${\alpha _{\rm{t}}}$, ${\xi _1}$ and $\theta_{\rm{d}}$: (a) The relationship between K(R) and ${\alpha _{\rm{t}}}$, $\theta_{\rm{d}}$; (b) the influence curve of ${\alpha _{\rm{t}}}$, ${\xi _1}$ and $\theta_{\rm{d}}$ on K(R).

    图 9  脉冲频率f、光束角$\theta$和光束入射角${\alpha _{\rm{t}}}$对不同目标直径的影响 (a) ${\alpha _{\rm{t}}}={\text{π}}/6$; (b) ${\alpha _{\rm{t}}}={\text{π}}/4$; (c) ${\alpha _{\rm{t}}}={\text{π}}/3$

    Figure 9.  Effects of pulse frequency f, beam angle $\theta$, and beam incidence angle ${\alpha _{\rm{t}}}$ on targets with different diameters: (a) ${\alpha _{\rm{t}}}={\text{π}}/6$; (b) ${\alpha _{\rm{t}}}={\text{π}}/4$; (c) ${\alpha _{\rm{t}}}={\text{π}}/3$.

    图 10  最大相邻脉冲光束夹角${\xi _{\max}}$ (a) f1与目标圆位置关系曲线; (b) $\theta_{\rm{d1}}$$\theta_{\rm{d2}}$取值计算

    Figure 10.  Maximum angle ${\xi _{\max}}$ between adjacent pulse beams: (a) The relation curve between f1 and the position of the target circle; (b) value of $\theta_{\rm{d1}}$ and $\theta_{\rm{d2}}$.

    图 11  ${\xi _1}$$\theta_{\rm{d}}$对系统回波功率的影响 (a) ${\alpha _{\rm{t}}}={\text{π}}/3$; (b) ${\alpha _{\rm{t}}}={\text{π}}/4$; (c) ${\alpha _{\rm{t}}}={\text{π}}/6$

    Figure 11.  Influence of ${\xi _1}$ and $\theta_{\rm{d}}$ on echo power. (a) ${\alpha _{\rm{t}}}={\text{π}}/3$; (b) ${\alpha _{\rm{t}}}={\text{π}}/4$; (c) ${\alpha _{\rm{t}}}={\text{π}}/6$.

    表 1  探测系统仿真参数

    Table 1.  Simulation parameters of the detection system.

    ParameterValueParameterValue
    Pt/W70Pmin/${\text{μ}}$W5
    vm/m·s–1700vt/m·s–1200
    Lt/m3$\eta$0.9
    Ar/m20.00031$\sigma$/m–10.00054
    $\theta_{\simfont\text{边界}}$/rad0.26$\xi_{\simfont\text{边界}}$/rad${\text{π}}/2$
    DownLoad: CSV

    表 2  计算最低脉冲频率及光束角系统参数

    Table 2.  Calculate the minimum pulse frequency and beam angle system parameters

    ParameterValueParameterValue
    Pt/W70Dt/m0.18
    R/m6${\alpha _{\rm{t}}}$${\text{π}}/3$, ${\text{π}}/4$, ${\text{π}}/6$
    DownLoad: CSV

    表 3  不同入射角${\alpha _{\rm{t}}}$下的nmin, ${\xi _{\max}}$, ${\theta _{\max }}$以及fmin

    Table 3.  nmin, ${\xi _{\max}}$, ${\theta _{\max }}$ and fmin at different incident angles ${\alpha _{\rm{t}}}$.

    入射角扩束前扩束后
    ${\alpha _{\rm{t}}}$/rad$\xi$/rad$\theta$/radkf/Hz${\xi _{\max}}$/rad${\theta _{\max }}$/radkminfmin/Hz
    ${\text{π}}/3$0.03450.0025182544110.24170.2417267798.74
    ${\text{π}}/4$0.04220.0025149444250.25130.2513257500.82
    ${\text{π}}/6$0.05980.0025105314110.25130.2513257500.82
    DownLoad: CSV
  • [1]

    杨雨川, 谭碧涛, 龙超, 陈力子, 张己化, 陈军燕 2013 红外与激光工程 42 3228Google Scholar

    Yang Y C, Tan B T, Long C, Cen L Z, Zhang J H, Chen J Y 2013 Infrared and Laser Engineering 42 3228Google Scholar

    [2]

    黄涛, 胡以华, 赵钢, 赵楠翔, 翟福琪, 吴永华 2011 红外与毫米波学报 30 179

    Huang T, Hu Y H, Zhao G, Zhao N X, Zhai F Q, Wu Y H 2011 J. Infrared Millim. Waves 30 179

    [3]

    赵楠翔, 胡以华, 雷武虎, 贺敏 2009 红外与激光工程 38 748Google Scholar

    Zhao N X, Hu Y H, Lei W H, He M 2009 Infrared and Laser Engineering 38 748Google Scholar

    [4]

    徐效文 2004 博士学位论文 (长春: 中国科学院研究生院)

    Xu X W 2004 Ph. D. Dissertation (Changchun: Graduate University of the Chinese Academy of Sciences)

    [5]

    李元, 李燕华, 李洛, 郭海超, 张彦梅, 温玉全 2015 兵工学报 36 2073Google Scholar

    Li Y, Li Y H, Li L, Guo H C, Zhang Y M, Wen Y Q 2015 Acta Armamentarii 36 2073Google Scholar

    [6]

    林永兵, 张国雄, 李真, 李杏华 2002 中国激光 11 1000Google Scholar

    Lin Y B, Zhang G X, Li Z, Li X H 2002 Chin. J. Lasers 11 1000Google Scholar

    [7]

    张伟, 张合, 陈勇, 张祥金, 徐孝彬 2017 物理学报 66 012901Google Scholar

    Zhang W, Zhang H, Chen Y, Zhang X J, Xu X B 2017 Acta Phys. Sin. 66 012901Google Scholar

    [8]

    张磊, 郭劲 2012 光学精密工程 20 789

    Zhang L, Guo J 2012 Optics Precis Eng. 20 789

    [9]

    赵延仲, 宋丰华, 孙华燕 2007 红外与激光工程 36 891Google Scholar

    Zhao Y Z, Song F H, Sun H Y 2007 Infrared and Laser Engineering 36 891Google Scholar

    [10]

    甘霖, 张合, 张祥金, 冯颖 2013 红外与激光工程 42 84Google Scholar

    Gan L, Zhang H, Zhang X J, Feng Y 2013 Infrared and Laser Engineering 42 84Google Scholar

    [11]

    谭亚运, 张合, 查冰婷 2015 强激光与粒子束 27 73

    Tan Y Y, Zhang H, Zha B T 2015 High Pow. Las. Part. Beams 27 73

    [12]

    查冰婷, 张合 2014 红外与激光工程 43 2081Google Scholar

    Zha B T, Zhang H 2014 Infrared and Laser Engineering 43 2081Google Scholar

    [13]

    徐孝彬, 张合 2016 中国激光 43 201

    Xu X B, Zhang H 2016 Chin. J. Lasers 43 201

    [14]

    寇添, 王海晏, 王芳, 陈闽, 徐强 2015 光学学报 35 211

    Kou T, Wang H Y, Wang F, Chen M, Xu Q 2015 Acta Opt. Sin. 35 211

    [15]

    张旭升, 郭亮, 黄勇, 罗志涛 2015 中国激光 42 20

    Zhang X S, Guo L, Huang Y, Luo Z T 2015 Chin. J. Lasers 42 20

    [16]

    Xu G, Zhang X Y, Su J, Li X T, Zheng A Q 2016 Appl. Opt. 55 2653Google Scholar

    [17]

    Steinvall O 2000 Appl. Opt. 39 4381Google Scholar

    [18]

    Cao T, Xiao A C, Wu L, Mao L G 2017 Comput. Geosci. 106 209Google Scholar

    [19]

    Krása J, Delle S D, Giuffreda E, Nassisi V 2015 Laser Part. Beams 33 601Google Scholar

    [20]

    马圆 2015 硕士学位论文 (南京: 南京理工大学)

    Ma Y 2015 M. S. Thesis (Nanjing: Nanjing University of Science and Technology)

    [21]

    Louis E 1964 Appl. Opt. 3 745Google Scholar

  • [1] Wang Hui-Lin, Liao Yan-Lin, Zhao Yan, Zhang Wen, Chen Zheng-Gen. Simulation study of quasi-monoenergetic high-energy proton beam based on multiple laser beams driving. Acta Physica Sinica, 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [2] Feng Kai-Yuan, Shao Fu-Qiu, Jiang Xiang-Rui, Zou De-Bin, Hu Li-Xiang, Zhang Guo-Bo, Yang Xiao-Hu, Yin Yan, Ma Yan-Yun, Yu Tong-Pu. Ultrashort pulsed neutron source driven by two counter-propagating laser pulses interacting with ultra-thin foil. Acta Physica Sinica, 2023, 72(18): 185201. doi: 10.7498/aps.72.20230706
    [3] Li Hang, Chen Ping, Tian Jin-Shou, Xue Yan-Hua, Wang Jun-Feng, Gou Yong-Sheng, Zhang Min-Rui, He Kai, Xu Xiang-Yan, Sai Xiao-Feng, Li Ya-Hui, Liu Bai-Yu, Wang Xiang-Lin, Xin Li-Wei, Gao Gui-Long, Wang Tao, Wang Xing, Zhao Wei. High time-resolution detector based on THz pulse accelerating and scanning electron beam. Acta Physica Sinica, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [4] Hou A-Hui, Hu Yi-Hua, Fang Jia-Jie, Zhao Nan-Xiang, Xu Shi-Long. Photon echo probability distribution characteristics and range walk error of small translational target for photon ranging. Acta Physica Sinica, 2022, 71(7): 074205. doi: 10.7498/aps.71.20211998
    [5] Research of a THz accelerating and scanning high time resolution detector. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210871
    [6] Han Jin-Hua, Guo Gang, Liu Jian-Cheng, Sui Li, Kong Fu-Quan, Xiao Shu-Yan, Qin Ying-Can, Zhang Yan-Wen. Design of 100-MeV proton beam spreading scheme with double-ring double scattering method. Acta Physica Sinica, 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [7] Wen Jin-Hui, Hu Ting, Wu Qin-Fei. Measurement of ultrashort laser pulses with rapid-scanning frequency-resolved optical gating device. Acta Physica Sinica, 2019, 68(11): 110601. doi: 10.7498/aps.68.20190034
    [8] Xu Xiao-Bin, Zhang He, Zhang Xiang-Jin, Chen Shan-Shan, Zhang Wei. Effect of plane target characteristics on ranging distribution for pulse laser detection. Acta Physica Sinica, 2016, 65(21): 210601. doi: 10.7498/aps.65.210601
    [9] Ge Ye, Hu Yi-Hua, Shu Rong, Hong Guang-Lie. A novel frequency stabilization method for the seed laser of the pulse optical parametric oscillator in differential absorption lidar. Acta Physica Sinica, 2015, 64(2): 020702. doi: 10.7498/aps.64.020702
    [10] Zhong Mian, Yang Liang, Ren Wei, Xiang Xia, Liu Xiang, Lian You-Yun, Xu Shi-Zhen, Guo De-Cheng, Zheng Wan-Guo, Yuan Xiao-Dong. Optical properties and laser damage performance of SiO2 irradiated by high-power pulsed electron beam. Acta Physica Sinica, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [11] Dang Wen-Jia, Zeng Xiao-Dong, Feng Zhe-Jun. Decoherence effect of target roughness in synthetic aperture ladar. Acta Physica Sinica, 2013, 62(2): 024204. doi: 10.7498/aps.62.024204
    [12] Zou De-Bin, Zhuo Hong-Bin, Shao Fu-Qiu, Yin Yan, Ma Yan-Yun, Tian Cheng-Lin, Xu Han, Ouyang Jian-Ming, Xie Xiang-Yun, Chen De-Peng. Theory and simulation of laser pulse trapping and amplifying in the interaction with a thin foil and a solid target. Acta Physica Sinica, 2012, 61(4): 045202. doi: 10.7498/aps.61.045202
    [13] Pan Hui-Ling, Li Peng-Cheng, Zhou Xiao-Xin. Single attosecond pulse generated by atom exposed to two laser pulses with the same color and half cycle pulses. Acta Physica Sinica, 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [14] Han Jing-Hua, Feng Guo-Ying, Yang Li-Ming, Zhang Qiu-Hui, Fu Yu-Qing, Niu Rui-Hua, Zhu Qi-Hua, Xie Xu-Dong, Zhou Shou-Huan. Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass. Acta Physica Sinica, 2011, 60(2): 028106. doi: 10.7498/aps.60.028106
    [15] Yan Xiong-Wei, Yu Hai-Wu, Cao Ding-Xiang, Li Ming-Zhong, Jiang Dong-Bin, Jiang Xin-Ying, Duan Wen-Tao, Xu Mei-Jian. ASE effect in pulsed energy-storage rep-rated Yb:YAG disk laser amplifier. Acta Physica Sinica, 2009, 58(6): 4230-4238. doi: 10.7498/aps.58.4230
    [16] Huang Lin, Dai Zhi-Yong, Liu Yong-Zhi. Influences of pumping manners on characteristics of all-fiber acousto-optic Q-switched lasers under different pulse repetition rates. Acta Physica Sinica, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [17] Zou Qi-Hui, Lü Bai-Da. The far-field properties of ultrashort pulsed beams with constant waist width in free space. Acta Physica Sinica, 2005, 54(12): 5642-5647. doi: 10.7498/aps.54.5642
    [18] Wang Zhao-Hua, Wei Zhi-Yi, Zhang Jie. Measurement of femtosecond laser pulses using PG frequency-resolved optical gating. Acta Physica Sinica, 2005, 54(3): 1194-1199. doi: 10.7498/aps.54.1194
    [19] Xu Han, Chang Wen-Wei, Yin Yan. Frequency shift of laser pulse propagating in wakefield. Acta Physica Sinica, 2004, 53(1): 171-175. doi: 10.7498/aps.53.171
    [20] Wang Zhao-Hua, Wei Zhi-Yi, Teng Hao, Wang Peng, Zhang Jie. Measurement of femtosecond laser pulses using SHG frequency-resolved optical gating technique. Acta Physica Sinica, 2003, 52(2): 362-366. doi: 10.7498/aps.52.362
Metrics
  • Abstract views:  5255
  • PDF Downloads:  33
  • Cited By: 0
Publishing process
  • Received Date:  16 October 2018
  • Accepted Date:  04 February 2019
  • Available Online:  23 March 2019
  • Published Online:  05 April 2019

/

返回文章
返回