Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrafast spin dynamics in double-magnetic-center endohedral fullerene Y2C2@C82-C2(1)

Huang Rui Li Chun Jin Wei Georgios Lefkidis Wolfgang Hübner

Citation:

Ultrafast spin dynamics in double-magnetic-center endohedral fullerene Y2C2@C82-C2(1)

Huang Rui, Li Chun, Jin Wei, Georgios Lefkidis, Wolfgang Hübner
PDF
HTML
Get Citation
  • Spin switching and spin transfer are essential prerequisites for designing the spin-logic devices based on endohedral fullerenes. In this paper by combining the theoreticalΛ-process model with a self-designed genetic algorithm, we are able to theoretically observe spin-switching and spin-transfer scenarios on the subpicosecond time scale in the endohedral fullerene Y2C2@C82-C2(1) from first principles. The results show that the geometry of the optimized enclosed Y2C2 cluster is consistent with the experimental data. There exists a certain repulsive force between the external C82-C2(1) cage and the encaged cluster. However, the whole system still maintains its integral cage structure due to the excellent stability of the fullerene. In the Y2C2@C82-C2(1) system, it is found that the spin density is highly localized on the two Y atoms and only minimally distributed on the carbon cage. By analyzing the spin-density distribution and the evolution of the spin expectation values as influenced by the laser pulses, it is found that global spin switching can be achieved on the two Y atoms, while spin transfer between the two Y atoms actually results from the redistribution of the spin density among the two magnetic centers and the carbon cage under the action of the optimized laser pulses. The achieved spin-switching scenario completes within about 1000 fs and its fidelity reaches 97.8%, while the obtained spin-transfer process completes within 200 fs and its fidelity reaches 95.1%. The electron absorption spectra of the system verify that optical transitions are possible between the main intermediate states and the initial and final states involved in the spin-switching and spin-transfer scenarios. Therefore, by analyzing the electron absorption spectra corresponding to the initial and final states, the energy of the laser pulses adopted for the studied spin-dynamics process can be predicted, and the spin transferability can be evaluated. In addition, it is found that the smaller the detuning between the required energy difference and the applied laser pulse energy is, the greater the probability for spin switching/transfer scenarios becomes. The present results reveal the mechanisms of the laser-induced ultrafast spin dynamics in Y2C2@C82-C2(1) and can provide a theoretical basis for designing the spin-logic devices on realistic endohedral fullerenes.
      Corresponding author: Li Chun, lichun@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11572251,11872309, 11504223), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2017JM1033), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102017JC1003, 3102017JC11001, GK2018-01009), the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University, China (Grant No. ZZ2018011), and the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) through the Transregional Collaborative Research Center SFB/TRR 173 “Spin+X”.
    [1]

    Li J L, Yang G W 2009 Appl. Phys. Lett. 95 085411

    [2]

    Li J L, Yang G W 2009 J. Phys. Chem. C 113 18292Google Scholar

    [3]

    Wang J, Ma L, Liang Y, Gao M, Wang G 2014 J. Theor. Comput. Chem. 13 162

    [4]

    Cox B J, Thamwattana N, Hill J M 2007 Proc. Math. Phys. Eng. Sci. 463 461Google Scholar

    [5]

    Li C, Liu J, Zhang S, Lefkidis G, Hübner W 2015 Carbon 87 153Google Scholar

    [6]

    Jin P, Hou Q, Tang C, Chen Z 2015 Theor. Chem. Acc. 134 1Google Scholar

    [7]

    Xiao Y, Zhu S E, Liu D J, Suzuki M, Lu X, Wang G W 2014 Angew. Chem. Int. Edit. 126 3050Google Scholar

    [8]

    Zhang N, Zhang Y, Yang M Q, Tang Z R, Xu Y J 2013 J. Catal. 299 210Google Scholar

    [9]

    Ren J M, Subbiah J, Zhang B, Ishitake K, Satoh K, Kamigaito M, Qiao G G, Wong E H, Wong W W 2016 Chem. Commun. 52 3356Google Scholar

    [10]

    Johnston H J, Hutchison G R, Christensen F M, Aschberger K, Stone V 2010 Toxicol. Sci. 114 162Google Scholar

    [11]

    Shu C, Corwin F D, Zhang J, Chen Z, Reid J E, Sun M, Xu W, Sim J H, Wang C, Fatouros P P 2009 Bioconjugate. Chem. 20 1186Google Scholar

    [12]

    Chai Y, Guo T, Jin C, Haufler R E, Chibante L P F, Fure J, Wang L, Alford J M, Smalley R E 1991 J. Phys. Chem. 95 557

    [13]

    Wang C R, Kai T, Dr T T, Yoshida T, Dr Y K, Dr E N, Dr M T, Sakata M, Dr H S 2001 Angew. Chem. Int. Ed. Engl. 40 397Google Scholar

    [14]

    Chen N, Chaur M N, Moore C, Pinzón J R, Valencia R, Rodríguezfortea A, Poblet J M, Echegoyen L 2010 Chem. Commun. 46 4818Google Scholar

    [15]

    Li F F, Chen N, Muletgas M, Triana V, Murillo J, Rodríguezfortea A, Poblet J M, Echegoyen L 2013 Chem. Sci. 4 3404Google Scholar

    [16]

    Jin P, Tang C, Chen Z 2014 Coordin. Chem. Rev. 270-271 89Google Scholar

    [17]

    Dunsch L, Yang S, Zhang L, Svitova A, Oswald S, Popov A A 2010 J. Am. Chem. Soc. 132 5413Google Scholar

    [18]

    Harneit W 2002 Phys. Rev. A 65 184

    [19]

    Benjamin S C, Ardavan A, Briggs G A D, Britz D A, Gunlycke D, Jefferson J, Jones M A G, Leigh D F, Lovett B W, Khlobystov A N 2005 J. Phys-Condens. Matt. 18 1599

    [20]

    Ju C, Suter D, Du J 2011 Phys. Lett. A 375 1441Google Scholar

    [21]

    Beaurepaire E, Merle J, Daunois A, Bigot J 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [22]

    Koopmans B, Ruigrok J J, Longa F D, de Jonge W J 2005 Phys. Rev. Lett. 95 267207Google Scholar

    [23]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515Google Scholar

    [24]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [25]

    Stöhr J, Siegmann H C 2006 Magnetism-From Fundamentals to Nanoscale Dynamics (Berlin Heidelberg: Springer-Verlag) p753

    [26]

    Li C, Liu J, Zhang S, Lefkidis G, Hübner W 2015 IEEE. T. Magn. 51 11

    [27]

    Li C, Liu J, Lefkidis G, Hübner W 2017 Phys. Chem. Chem. Phys. 19 673Google Scholar

    [28]

    Jin F, Tamm N B, Troyanov S I, Yang S 2018 J. Am. Chem. Soc. 140 3496Google Scholar

    [29]

    李春, 杨帆, Georgios Lefkidis, Wolfgang Hübner 2011 物理学报 60 017802

    Li C, Yang F, Lefkidis G, Hübner W 2011 Acta Phys. Sin. 60 017802

    [30]

    Li C, Jin W, Xiang H, Lefkidis G, Hübner W 2011 Phys. Rev. B 84 2250

    [31]

    李春, 张少斌, 金蔚, Georgios Lefkidis, Wolfgang Hübner 2012 物理学报 61 177502Google Scholar

    Li C, Zhang S B, Jin W, Lefkidis G, Hubner W 2012 Acta Phys. Sin. 61 177502Google Scholar

    [32]

    Zhang N, Du H, Chang J, Jin W, Li C, Lefkidis G, Hubner W 2018 Phys. Rev. B 98 104431Google Scholar

    [33]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R 2009 Gaussian 09, Revision A.1. (Wallingford: Gaussian Inc.)

    [34]

    Nakatsuji H 1979 Chem. Phys. Lett. 67 329Google Scholar

    [35]

    Hay P J 1985 J. Chem. Phys. 82 299Google Scholar

  • 图 1  双磁性中心内嵌富勒烯Y2C2@C82-C2(1)体系 (a) 内嵌富勒烯Y2C2@C82C2(1); (b) 内嵌的双金属碳化物团簇(Y2C2)

    Figure 1.  Double-magnetic-center endohedral fullerene Y2C2@C82-C2(1) system: (a) Endohedral fullerene Y2C2@C82C2(1); (b) endohedral bimetallic carbide clusters (Y2C2).

    图 2  激光脉冲作用下, Y2C2@C82-C2(1)体系中的超快自旋翻转过程 (a) 自旋翻转过程中所涉及的初始态(黑色虚线)、最终态(红色实线)和中间态(彩色实线)随时间变化的占据情况; (b) 自旋角动量分量的期望值随时间的变化情况; (c) 实现自旋翻转所用的激光脉冲包络线, 插图为结构优化后的内嵌Y2C2团簇, 碳笼用虚线表示; (d)SAC-CI计算得到的能级图(考虑SOC)

    Figure 2.  Ultrafast spin-switching scenario achieved in Y2C2@C82-C2(1) system under laser pulses: (a) Time evolution of the occupation of the initial state (dashed black line), final state (solid red line), and the intermediate states (colorized solid lines) involved in spin-switching scenario; (b) variation of the expectation values of the spin angular momentum components along the x, y and z axis with time; (c) laser pulse envelope of the spin-switching scenario, inset represents structurally optimized endohedral Y2C2 cluster, the dashed circle represents the carbon cage; (d)energy levels of Y2C2@C82-C2(1) calculated by SAC-CI (including SOC).

    图 3  激光脉冲作用下, Y2C2@C82-C2(1)体系中的超快自旋转移过程 (a) 自旋转移过程中所涉及的初始态(黑色虚线)、最终态(红色实线)和中间态(彩色实线)随时间变化的占据情况; (b) 自旋角动量分量的期望值随时间的变化情况; (c) 实现自旋转移所用的激光脉冲包络线, 插图为结构优化后的内嵌Y2C2团簇, 碳笼用虚线表示; (d)SAC-CI计算得到的能级图(考虑SOC)

    Figure 3.  Ultrafast spin-transfer scenario achieved in Y2C2@C82-C2(1) system under laser pulses: (a) Time evolution of the occupation of the initial state (dashed black line), final state (solid red line), and the intermediate states (colorized solid lines) involved in spin-transfer scenario; (b) variation of the expectation values of the spin angular momentum components along the x, y and z axis with time; (c) laser pulse envelope of the spin-transfer scenario, inset represents structurally optimized endohedral Y2C2 cluster, the dashed circle represents the carbon cage; (d) energy levels of Y2C2@C82-C2(1) calculated by SAC-CI (including SOC).

    图 4  Y2C2@C82-C2(1)体系自旋翻转和自旋转移过程中初始态$\left| 2 \right\rangle $和最终态$\left| 11 \right\rangle $的电子吸收光谱图

    Figure 4.  Electronic absorption spectra of the initial (state $\left| 2 \right\rangle $) and final (state $\left| 11 \right\rangle $) state of the spin-switching and spin-transfer scenarios in Y2C2@C82-C2(1).

    表 1  Y2C2@C82-C2(1)体系中能量最低的五个三重态的自旋密度分布情况(未考虑SOC)

    Table 1.  Spin density distributions of the five lowest triplet states in Y2C2@C82-C2(1) system (without SOC).

    AtomState 1State 2State 3State 4State 5
    Y10.4480.4790.1250.3680.198
    Y20.6060.8310.1480.8010.173
    C (max)0.0580.0460.0590.0420.066
    DownLoad: CSV

    表 2  自旋翻转过程涉及能态的局域化位置、能量和自旋期望值(考虑SOC)

    Table 2.  Localization positions, energies and spin expectation values of the involved states in spin-switching scenario (including SOC).

    StateSpin localizationEnergySxSySzS
    eV
    312.4440.0010.0010.9180.918
    302.443−0.003−0.0030.0000.004
    292.4430.0020.001−0.9180.918
    4Y1 = Y20.863−0.001−0.0430.9620.962
    30.8620.0020.0830.0000.083
    2Y1 = Y20.862−0.001−0.0400.9620.963
    DownLoad: CSV

    表 3  Y2C2@C82-C2(1)体系中自旋密度分布情况(考虑SOC)

    Table 3.  Spin density distribution in Y2C2@C82-C2(1) system (including SOC).

    Energy/eVY1Y2C (max)Total spin density (C atom)
    State $\left| 2 \right\rangle $0.862−0.504−0.680−0.016−1.062
    State $\left| 11 \right\rangle $1.586−0.414−0.900−0.032−0.933
    Difference value0.7240.090−0.2200.129
    DownLoad: CSV
  • [1]

    Li J L, Yang G W 2009 Appl. Phys. Lett. 95 085411

    [2]

    Li J L, Yang G W 2009 J. Phys. Chem. C 113 18292Google Scholar

    [3]

    Wang J, Ma L, Liang Y, Gao M, Wang G 2014 J. Theor. Comput. Chem. 13 162

    [4]

    Cox B J, Thamwattana N, Hill J M 2007 Proc. Math. Phys. Eng. Sci. 463 461Google Scholar

    [5]

    Li C, Liu J, Zhang S, Lefkidis G, Hübner W 2015 Carbon 87 153Google Scholar

    [6]

    Jin P, Hou Q, Tang C, Chen Z 2015 Theor. Chem. Acc. 134 1Google Scholar

    [7]

    Xiao Y, Zhu S E, Liu D J, Suzuki M, Lu X, Wang G W 2014 Angew. Chem. Int. Edit. 126 3050Google Scholar

    [8]

    Zhang N, Zhang Y, Yang M Q, Tang Z R, Xu Y J 2013 J. Catal. 299 210Google Scholar

    [9]

    Ren J M, Subbiah J, Zhang B, Ishitake K, Satoh K, Kamigaito M, Qiao G G, Wong E H, Wong W W 2016 Chem. Commun. 52 3356Google Scholar

    [10]

    Johnston H J, Hutchison G R, Christensen F M, Aschberger K, Stone V 2010 Toxicol. Sci. 114 162Google Scholar

    [11]

    Shu C, Corwin F D, Zhang J, Chen Z, Reid J E, Sun M, Xu W, Sim J H, Wang C, Fatouros P P 2009 Bioconjugate. Chem. 20 1186Google Scholar

    [12]

    Chai Y, Guo T, Jin C, Haufler R E, Chibante L P F, Fure J, Wang L, Alford J M, Smalley R E 1991 J. Phys. Chem. 95 557

    [13]

    Wang C R, Kai T, Dr T T, Yoshida T, Dr Y K, Dr E N, Dr M T, Sakata M, Dr H S 2001 Angew. Chem. Int. Ed. Engl. 40 397Google Scholar

    [14]

    Chen N, Chaur M N, Moore C, Pinzón J R, Valencia R, Rodríguezfortea A, Poblet J M, Echegoyen L 2010 Chem. Commun. 46 4818Google Scholar

    [15]

    Li F F, Chen N, Muletgas M, Triana V, Murillo J, Rodríguezfortea A, Poblet J M, Echegoyen L 2013 Chem. Sci. 4 3404Google Scholar

    [16]

    Jin P, Tang C, Chen Z 2014 Coordin. Chem. Rev. 270-271 89Google Scholar

    [17]

    Dunsch L, Yang S, Zhang L, Svitova A, Oswald S, Popov A A 2010 J. Am. Chem. Soc. 132 5413Google Scholar

    [18]

    Harneit W 2002 Phys. Rev. A 65 184

    [19]

    Benjamin S C, Ardavan A, Briggs G A D, Britz D A, Gunlycke D, Jefferson J, Jones M A G, Leigh D F, Lovett B W, Khlobystov A N 2005 J. Phys-Condens. Matt. 18 1599

    [20]

    Ju C, Suter D, Du J 2011 Phys. Lett. A 375 1441Google Scholar

    [21]

    Beaurepaire E, Merle J, Daunois A, Bigot J 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [22]

    Koopmans B, Ruigrok J J, Longa F D, de Jonge W J 2005 Phys. Rev. Lett. 95 267207Google Scholar

    [23]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515Google Scholar

    [24]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [25]

    Stöhr J, Siegmann H C 2006 Magnetism-From Fundamentals to Nanoscale Dynamics (Berlin Heidelberg: Springer-Verlag) p753

    [26]

    Li C, Liu J, Zhang S, Lefkidis G, Hübner W 2015 IEEE. T. Magn. 51 11

    [27]

    Li C, Liu J, Lefkidis G, Hübner W 2017 Phys. Chem. Chem. Phys. 19 673Google Scholar

    [28]

    Jin F, Tamm N B, Troyanov S I, Yang S 2018 J. Am. Chem. Soc. 140 3496Google Scholar

    [29]

    李春, 杨帆, Georgios Lefkidis, Wolfgang Hübner 2011 物理学报 60 017802

    Li C, Yang F, Lefkidis G, Hübner W 2011 Acta Phys. Sin. 60 017802

    [30]

    Li C, Jin W, Xiang H, Lefkidis G, Hübner W 2011 Phys. Rev. B 84 2250

    [31]

    李春, 张少斌, 金蔚, Georgios Lefkidis, Wolfgang Hübner 2012 物理学报 61 177502Google Scholar

    Li C, Zhang S B, Jin W, Lefkidis G, Hubner W 2012 Acta Phys. Sin. 61 177502Google Scholar

    [32]

    Zhang N, Du H, Chang J, Jin W, Li C, Lefkidis G, Hubner W 2018 Phys. Rev. B 98 104431Google Scholar

    [33]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R 2009 Gaussian 09, Revision A.1. (Wallingford: Gaussian Inc.)

    [34]

    Nakatsuji H 1979 Chem. Phys. Lett. 67 329Google Scholar

    [35]

    Hay P J 1985 J. Chem. Phys. 82 299Google Scholar

  • [1] Cui Zi-Chun, Yang Mo-Han, Ruan Xiao-Peng, Fan Xiao-Li, Zhou Feng, Liu Wei-Min. High-throughput calculation of interfacial friction of two-dimensional material. Acta Physica Sinica, 2023, 72(2): 026801. doi: 10.7498/aps.72.20221676
    [2] From Transverse Field Ising Chain to Quantum E8 Integrable Model. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20211836
    [3] Lu Xin, Xie Meng-Lin, Liu Jing, Jin Wei, Li Chun, Georgios Lefkidis, Wolfgang Hübner. First-principles study of ultrafast spin dynamics in FemB20 (m = 1, 2) clusters. Acta Physica Sinica, 2021, 70(12): 127505. doi: 10.7498/aps.70.20210056
    [4] Wang Xiao, Yang Jia-Hao, Wu Jian-Da. From the transverse field Ising chain to the quantum E8 integrable model. Acta Physica Sinica, 2021, 70(23): 230504. doi: 10.7498/aps.70.20211836
    [5] Peng Jun-Hui, Tikhonov Evgenii. First-principles study of vacancy ordered structures, mechanical properties and electronic properties of ternary Hf-C-N system. Acta Physica Sinica, 2021, 70(21): 216101. doi: 10.7498/aps.70.20210244
    [6] Zhang Peng, Liu Zheng, Dai Jian-Ming, Yang Zhao-Rong, Su Fu-Hai. Anisotropic resonance absorptions induced by high magnetic field in ZnCr2Se4. Acta Physica Sinica, 2020, 69(20): 207501. doi: 10.7498/aps.69.20201507
    [7] Guo Zhi-Chao, Zhang Tong-Yao, Zhang Jing. Spin noise spectroscopy of cesium vapor in micron-scale cell. Acta Physica Sinica, 2020, 69(3): 037201. doi: 10.7498/aps.69.20191623
    [8] Li Jun, Liu Li-Sheng, Xu Shuang, Zhang Jin-Yong. Mechanical, electronic properties and deformation mechanisms of Ti3B4 under uniaxial compressions: a first-principles calculation. Acta Physica Sinica, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [9] Xiang Tian, Cheng Liang, Qi Jing-Bo. Ultrafast charge and spin dynamics on topological insulators. Acta Physica Sinica, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [10] Zhang Shu-Ting, Sun Zhi, Zhao Lei. First-principles study of graphene nanoflakes with large spin property. Acta Physica Sinica, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [11] Deng Xiao-Qing, Sun Lin, Li Chun-Xian. Spin transport properties for iron-doped zigzag-graphene nanoribbons interface. Acta Physica Sinica, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [12] Tian Wen, Yuan Peng-Fei, Yu Zhuo-Liang, Tao Bin-Kai, Hou Sen-Yao, Ye Cong, Zhang Zhen-Hua. Electronic properties of doped hexagonal graphene. Acta Physica Sinica, 2015, 64(4): 046102. doi: 10.7498/aps.64.046102
    [13] Wang Xin-Xin, Zhang Ying, Zhou Hong-Bo, Wang Jin-Long. Effects of niobium on helium behaviors in tungsten:a first-principles investigation. Acta Physica Sinica, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [14] Jin Shuo, Sun Lu. Stability of hydrogen in tungsten with carbon impurity: a first-principles study. Acta Physica Sinica, 2012, 61(4): 046104. doi: 10.7498/aps.61.046104
    [15] Li Chun, Zhang Shao-Bin, Jin Wei, Georgios Lefkidis, Wolfgang Hübner. Laser-induced ultrafast spin transfer in linear magnetic molecular ions. Acta Physica Sinica, 2012, 61(17): 177502. doi: 10.7498/aps.61.177502
    [16] Li Chun, Yang Fan, Georgios Lefkidis, Wolfgang Hübner. Laser-induced ultrafast spin dynamics research on magnetic nanostructures. Acta Physica Sinica, 2011, 60(1): 017802. doi: 10.7498/aps.60.017802
    [17] Li Jin, Gui Gui, Sun Li-Zhong, Zhong Jian-Xin. Structure transition of two-dimensional hexagonal BN under large uniaxial strain. Acta Physica Sinica, 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [18] Yuan Peng-Fei, Zhu Wen-Jun, Xu Ji-An, Liu Shao-Jun, Jing Fu-Qian. High pressure phase transition and phonon-dispersion relations of BeO calculated by first-principles method. Acta Physica Sinica, 2010, 59(12): 8755-8761. doi: 10.7498/aps.59.8755
    [19] Gu Juan, Wang Shan-Ying, Gou Bing-Cong. The geometrical structure, electronic structure and magnetism of bimetallic AunM2 (n=1,2; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) clusters. Acta Physica Sinica, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [20] Qin Ji-Hong, Xu Su-Fen, Feng Shi-Ping. Spin dynamics in quasi-one-dimensional strongly correlated zigzag materials. Acta Physica Sinica, 2006, 55(10): 5511-5515. doi: 10.7498/aps.55.5511
Metrics
  • Abstract views:  6679
  • PDF Downloads:  42
  • Cited By: 0
Publishing process
  • Received Date:  23 October 2018
  • Accepted Date:  07 December 2018
  • Available Online:  01 January 2019
  • Published Online:  20 January 2019

/

返回文章
返回