Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of plasma shielding effect on ground state and excited state energies of Ar16+

Ma Kun Chen Zhan-Bin Huang Shi-Zhong

Citation:

Influence of plasma shielding effect on ground state and excited state energies of Ar16+

Ma Kun, Chen Zhan-Bin, Huang Shi-Zhong
PDF
HTML
Get Citation
  • A systematical knowledge of the atomic properties in plasma is of great interest for various research areas, such as the explanation of the X-ray radiation from universe, plasma diagnostics, extreme ultraviolet (EUV) and X-ray sources and so on. Among these researches, the detailed information about how the plasma influences the atomic energy level and transition spectrum are crucial for understanding the X-ray emission mechanism and the state of plasma. An analytic calculation method of treating the non-relativistic energy and its relativistic corrections for the multi-electron atoms embedded in weakly coupled plasma is developed based on the Rayleigh-Ritz variation method. The systematical investigations are performed for the ground state 1s2 1S, single excited states 1sns 1,2S (n = 2−5), 1snp 1,3P (n = 2−5) and double excited state 2s2p 1P of Ar16+ ion in weak coupled plasma. The analytic formulas for calculating the non-relativistic energy and its relativistic correction energy are derived, which include mass correction, one and two-body Darwin correction, spin-spin contact interaction and orbit-orbit interaction. All the angular integration spin sums involved in the problem are worked out explicitly by using the irreducible theory. The influence of plasma on non-relativistic energy and relativistic correction energy are discussed. The results show that the mass correction and the one-body Darwin correction are the main ones among the terms of relativistic correction, and are three orders of magnitude greater than the other relativistic terms. The plasma shielding effect mainly affects the non-relativistic energy, and has little effect on the relativistic correction. At the same time, it has a more significant selectivity for the electronic configuration. Further research shows that the influence of plasma on the energy of the outer shell electron is greater than that of the inner shell electron. With the increase of the plasma shielding parameters, the outer shell electron extends outward, and the higher the excited state, the greater the degree of extension is. This work should be useful for astrophysical applications where such a plasma environment exists.
      Corresponding author: Ma Kun, makun@hsu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804112, 11504421), the Natural Science Foundation of Anhui Province, China (Grant No. 1808085QA22), the Key Project for Young Talents in College of Anhui Province, China (Grant No. gxyqZD2016301), and the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJHS2015B01).
    [1]

    Debye P, Hückel E 1923 Z. Phys. 24 185

    [2]

    Shukla P K, Eliasson B 2008 Phys. Lett. A 372 2897Google Scholar

    [3]

    Chen Z B, Hu H W, Ma K, Liu X B, Guo X L, Li S, Zhu B H, Huang L, Wang K 2018 Phys. Plasmas 25 032108Google Scholar

    [4]

    Ray D 2000 Phys. Rev. E 62 4126Google Scholar

    [5]

    Wu Z Q, Han G X, Yan J, Pang J Q 2002 J. Phys. B 35 2305Google Scholar

    [6]

    Das M 2014 Phys. Plasmas 21 012709Google Scholar

    [7]

    Li Y Q, Wu J H, Hou Y, Yuan J M 2008 J. Phys. B 41 145002Google Scholar

    [8]

    Saha B, Fritzsche S 2007 J. Phys. B 40 259Google Scholar

    [9]

    Belkhiri M, Fontes C J, Poirier M 2015 Phys. Rev. A 92 032501Google Scholar

    [10]

    Fernley J A, Taylor K T, Seaton M J 1987 J. Phys. B 20 6457Google Scholar

    [11]

    Peach G, Saraph H E, Seaton M J 1988 J. Phys. B 21 3669Google Scholar

    [12]

    Fernley J A, Taylor K T, Seaton M J 1987 J. Phys. B 20 6457Google Scholar

    [13]

    Kaspi S, Brandt W N, Netzer H, Sambruna R, Chartas G, Garmire G P, Nousek J A 2000 Astrophys. J. Lett. 535 L17Google Scholar

    [14]

    Saha B, Bhattacharyya S, Mukherjee T K, Mukherjee P K 2003 Int. J. Quantum Chem. 92 413Google Scholar

    [15]

    Costa A M, Martins M C, Parente F, Santos J P, Indelicato P 2001 Atom. Data Nucl. Dat. 79 223Google Scholar

    [16]

    Goryaev F F, Vainshtein L A, Urnov A M 2017 Atom. Data Nucl. Dat. 113 117Google Scholar

    [17]

    Saha J K, Bhattacharyya S, Mukherjee T K, Mukherjee P K 2010 J. Quant. Spectrosc. Radiat. Transfer 111 675Google Scholar

    [18]

    Fang T K, Wu C S, Gao X, Chang T N 2017 Phys. Rev. A 96 052502Google Scholar

    [19]

    Kar S, Ho Y K 2005 Chem. Phys. Lett. 402 544Google Scholar

    [20]

    Xie L Y, Wang J G, Janev R K, Qu Y Z, Dong C Z 2012 Eur. Phys. J. D 66 125Google Scholar

    [21]

    Chen Z B 2017 Phys. Plasmas 24 122119Google Scholar

    [22]

    Chen Z B, Ma K, Hu H W, Wang K 2018 Phys. Plasmas 25 072120Google Scholar

    [23]

    Chaudhuri S K, Mukherjee P K, Fricke B 2017 Eur. Phys. J. D 71 71Google Scholar

    [24]

    Hu H W, Chen Z B, Chen W C 2016 Radiat. Eff. Defect. S. 171 890Google Scholar

    [25]

    Ray D, Mukherjee P K 1998 J. Phys. B 31 3479Google Scholar

    [26]

    Ray D, Mukherjee P K 1998 Eur. Phys. J. D 2 89Google Scholar

  • 图 1  A16+ 1s2 1S, 1s2s 1,3S, 1s2p 1,3P和2s2p 1P 的相对论修正能量随参数u的变化

    Figure 1.  Relativistic corrections against parameter u for 1s2 1S, 1s2s 1,3S, 1s2p 1,3P and 2s2p 1P of Ar16+.

    图 2  等离子能级偏移与参数u之间的关系

    Figure 2.  Plasma energy shifts against parameter u.

    图 3  内外壳层电子径向波函数模方

    Figure 3.  Module of radial wave functions for inner and outer shell electron.

    表 1  相对论修正对C4+基态1s2 1S能级的影响(单位: a.u.)

    Table 1.  Effects of relativistic correction on ground state 1s2 1S energies level in C4+ (unit: a.u.).

    u${\alpha _{1{\rm{s}}}}$ENREMCED1ΔERSETRef.[20]Ref.[25,26]
    05.6875−32.3477−0.06965080.0587822−0.01087−32.35857−32.4176−32.3612
    0.15.68614−31.1633−0.06958430.0587401−0.01084−31.17414−31.2324−31.177
    0.25.68218−30.0095−0.06939050.0586174−0.01077−30.02027−30.079−30.0237
    0.35.67577−28.8854−0.06907810.0584193−0.01066−28.89606−28.9557
    0.45.66706−27.7899−0.06865490.0581507−0.01050−27.80040−27.8614
    0.55.65616−26.7223−0.06812820.0578158−0.01031−26.73261−26.7963−26.7395
    0.65.64318−25.6817−0.0675050.0574187−0.01009−25.69179−25.7576
    0.75.62821−24.6674−0.06679160.0569630−0.00983−24.67723−24.7457
    0.85.61134−23.6788−0.06599420.0564522−0.00954−23.68834−23.7006−23.7594
    0.95.59263−22.7151−0.06511860.0558895−0.00923−22.72433−22.7986
    1.05.57215−21.7758−0.06417010.0552778−0.00889−21.78469−21.8629
    DownLoad: CSV

    表 2  Ar16+ 1sns, 1snp和2s2p组态变分参数

    Table 2.  Variation parameters of 1sns, 1snp and 2snp configurations in Ar16+.

    2S+1n1sns 2S+1S1snp 2S+1P2snp 2S+1P
    ${\alpha _{1{\rm{s}}}}$${\alpha _{n{\rm{s}}}}$ENR${\alpha _{1{\rm{s}}}}$${\alpha _{n{\rm{p}}}}$ENR${\alpha _{2{\rm{s}}}}$${\alpha _{n{\rm{p}}}}$ENR
    1117.6875−312.848
    217.932417.3433−198.38418.010716.9176−197.96917.411317.8229−77.601
    317.981517.2194−178.1418.000816.9725−178.01817.942817.2934−56.8575
    417.992417.1623−171.06818.000116.9852−171.01717.976617.2143−49.655
    517.996117.129−167.7991816.9901−167.77317.988217.1692−46.3425
    3218.013717.1931−199.19617.957717.266−198.504
    318.003117.1286−178.35517.9917.1509−178.162
    418.001217.0962−171.15517.996117.1079−171.076
    518.000617.0768−167.84317.998117.0845−167.803
    DownLoad: CSV

    表 3  Ar16+基态1s2 1S相对论性能量(单位: a.u.)

    Table 3.  Relativistic correction on ground state 1s2 1S energies level in Ar16+ (unit: a.u.).

    u${\alpha _{1{\rm{s}}}}$ENREMCED1ΔERSET
    017.6875−312.848−6.514885.30399−1.21089−314.05889
    0.117.6871−309.263−6.514255.30360−1.21065−310.47365
    0.217.6858−305.708−6.512385.30246−1.20992−306.91792
    0.317.6837−302.184−6.509295.30057−1.20872−303.39272
    0.417.6808−298.688−6.505015.29796−1.20705−299.89505
    0.517.6771−295.222−6.499575.29463−1.20494−296.42694
    0.617.6726−291.785−6.492995.29061−1.20238−292.98738
    0.717.6674−288.377−6.485305.28591−1.19939−289.57639
    0.817.6614−284.997−6.476525.28055−1.19597−286.19297
    0.917.6547−281.645−6.466685.27453−1.19215−282.83715
    1.017.6473−278.32−6.455805.26787−1.18793−279.50793
    DownLoad: CSV

    表 8  Ar16+基态2s2p 1P相对论性能量(单位: a.u.)

    Table 8.  Relativistic correction on excited state 2s2p 1P energies level in Ar16+ (unit: a.u.).

    u${\alpha _{2{\rm{s}}}}$${\alpha _{2{\rm{p}}}}$ENREMCED1ED2ESSCEOOΔERSET
    017.411317.8229−77.6010−0.594990.31621−8.39310 × 10−41.67862 × 10−3−0.0006009−0.27854−77.87954
    0.117.404317.8174−74.0566−0.594060.31583−8.38360 × 10−41.67672 × 10−3−6.00393 × 10−4−0.27800−74.33460
    0.217.383917.8014−70.6207−0.591390.31472−8.35602 × 10−41.67120 × 10−3−5.98927 × 10−4−0.27644−70.89714
    0.317.35117.7755−67.2898−0.587110.31294−8.31163 × 10−41.66233 × 10−3−5.96551 × 10−4−0.27393−67.56373
    0.417.306417.7402−64.0605−0.581320.31053−8.25157 × 10−41.65031 × 10−3−5.93313 × 10−4−0.27055−64.33105
    0.517.250817.6959−60.9298−0.574150.30754−8.17686 × 10−41.63537 × 10−3−5.89259 × 10−4−0.26637−61.19617
    0.617.184517.6429−57.8948−0.565690.30401−8.08845 × 10−41.61769 × 10−3−5.84432 × 10−4−0.26146−58.15626
    0.717.108117.5816−54.9531−0.556060.29998−7.98720 × 10−41.59744 × 10−3−5.78871 × 10−4−0.25586−55.20896
    0.817.021917.5122−52.1022−0.545340.29546−7.87391 × 10−41.57478 × 10−3−5.72611 × 10−4−0.24966−52.35186
    0.916.926217.4349−49.3398−0.533610.29051−7.74933 × 10−41.54987 × 10−3−5.65688 × 10−4−0.24289−49.58269
    1.016.821317.3499−46.6639−0.520980.28514−7.61414 × 10−41.52283 × 10−3−5.58134 × 10−4−0.23563−46.89953
    DownLoad: CSV

    表 4  Ar16+激发态1s2s 1S相对论性能量(单位: a.u.)

    Table 4.  Relativistic correction on excited state 1s2s 1S energies level in Ar16+ (unit: a.u.).

    u${\alpha _{1{\rm{s}}}}$${\alpha _{2{\rm{s}}}}$ENREMCED1ED2ESSCΔERSET
    017.932417.3433−198.384−3.930943.07620−7.249983 × 10−31.450003 × 10−2−0.84749−199.23149
    0.117.931917.3364−194.822−3.929823.07562−7.245793 × 10−31.44916 × 10−2−0.84695−195.66895
    0.217.930617.3164−191.335−3.926573.07394−7.233613 × 10−31.44672 × 10−2−0.84540−192.18040
    0.317.928517.284−187.921−3.921303.07121−7.213953 × 10−31.44279 × 10−2−0.84288−188.76388
    0.417.925617.2401−184.577−3.914153.06749−7.187233 × 10−31.43745 × 10−2−0.83947−185.41647
    0.517.921817.1852−181.301−3.905223.06284−7.153833 × 10−31.43077 × 10−2−0.83523−182.13623
    0.617.917317.1198−178.092−3.894623.05729−7.114063 × 10−31.42281 × 10−2−0.83022−178.92222
    0.717.91217.0445−174.947−3.882453.05090−7.068203 × 10−31.41364 × 10−2−0.82448−175.77148
    0.817.90616.9594−171.866−3.868803.04371−7.016463 × 10−31.40329 × 10−2−0.81807−172.68407
    0.917.899216.865−168.847−3.853773.03575−6.959053 × 10−31.39181 × 10−2−0.81106−169.65806
    1.017.891816.7615−165.889−3.837453.02706−6.896133 × 10−31.37923 × 10−2−0.80349−166.69249
    DownLoad: CSV

    表 5  Ar16+激发态1s2s 3S相对论性能量(单位: a.u.)

    Table 5.  Relativistic correction on excited state 1s2s 3S energies level in Ar16+ (unit: a.u.).

    u${\alpha _{1{\rm{s}}}}$${\alpha _{2{\rm{s}}}}$ENREMCED1ΔERSET
    018.013717.1931−199.196−3.977033.10590−0.87113−200.06713
    0.118.013317.1858−195.635−3.975943.10534−0.87060−196.50560
    0.218.012217.1646−192.149−3.972763.10370−0.86906−193.01806
    0.318.010417.1305−188.735−3.967613.10104−0.86657−189.60157
    0.418.007817.0841−185.392−3.960623.09742−0.86320−186.25520
    0.518.004617.0263−182.119−3.951893.09289−0.85900−182.97800
    0.618.000616.9574−178.912−3.941523.08748−0.85404−179.76604
    0.717.99616.878−175.77−3.929623.08124−0.84838−176.61838
    0.817.990716.7885−172.692−3.916273.07421−0.84206−173.53406
    0.917.984716.6891−169.676−3.901563.06643−0.83513−170.51113
    1.017.978116.5803−166.721−3.885573.05792−0.82765−167.54865
    DownLoad: CSV

    表 6  Ar16+激发态1s2p 1P相对论性能量(单位: a.u.)

    Table 6.  Relativistic correction on excited state 1s2p 1P energies level in Ar16+ (unit: a.u.).

    u${\alpha _{1{\rm{s}}}}$${\alpha _{2{\rm{p}}}}$ENREMCED1ED2ESSCEOOΔERSET
    018.010716.9176−197.969−3.581672.80005−2.073823 × 10−34.147643 × 10−3−0.0064010−0.78595−198.75495
    0.118.010316.9115−194.403−3.581232.79986−2.071283 × 10−34.142563 × 10−3−6.394563 × 10−3−0.78569−195.18869
    0.218.009116.8936−190.903−3.579942.79929−2.063883 × 10−34.127763 × 10−3−6.375753 × 10−3−0.78496−191.68796
    0.318.00716.8646−187.467−3.577822.79834−2.051933 × 10−34.103873 × 10−3−6.345353 × 10−3−0.78377−188.25077
    0.418.004216.8251−184.094−3.574902.79703−2.035733 × 10−34.071453 × 10−3−6.304033 × 10−3−0.78214−184.87614
    0.518.000716.7755−180.783−3.571212.79536−2.015513 × 10−34.031023 × 10−3−6.252373 × 10−3−0.78009−181.56309
    0.617.996316.7162−177.532−3.566772.79335−1.991533 × 10−33.983063 × 10−3−6.190923 × 10−3−0.77762−178.30962
    0.717.991316.6477−174.339−3.561612.79099−1.963993 × 10−33.927983 × 10−3−6.120133 × 10−3−0.77478−175.11378
    0.817.985516.57−171.203−3.555742.78830−1.933093 × 10−33.866193 × 10−3−6.040453 × 10−3−0.77155−171.97455
    0.917.97916.4835−168.124−3.549192.78527−1.899033 × 10−33.798063 × 10−3−5.952253 × 10−3−0.76797−168.89197
    1.017.971816.3883−165.101−3.541982.78193−1.861983 × 10−33.723953 × 10−3−5.855883 × 10−3−0.76404−165.86504
    DownLoad: CSV

    表 7  Ar16+基态1s2p 3P相对论性能量(单位: a.u.)

    Table 7.  Relativistic correction on excited state 1s2p 3P energies level in Ar16+ (unit: a.u.).

    u${\alpha _{1{\rm{s}}}}$${\alpha _{2{\rm{p}}}}$ENREMCED1EOOΔERSET
    017.957717.266−198.504−3.547362.775396.7643 × 10−3−0.76521−199.26921
    0.117.957317.26−194.937−3.546942.775226.75783 × 10−3−0.76496−195.70196
    0.217.956217.2424−191.436−3.545712.774696.738923 × 10−3−0.76428−192.20028
    0.317.954317.2138−187.998−3.543692.773816.70833 × 10−3−0.76317−188.76117
    0.417.951717.1749−184.622−3.540912.772606.66673 × 10−3−0.76164−185.38364
    0.517.948317.1261−181.306−3.537392.771066.61473 × 10−3−0.75972−182.06572
    0.617.944317.0678−178.05−3.533152.769196.55273 × 10−3−0.75741−178.80741
    0.717.939617.0002−174.852−3.528222.767006.48123 × 10−3−0.75474−175.60674
    0.817.934216.9237−171.71−3.522622.764506.40083 × 10−3−0.75172−172.46172
    0.917.928116.8384−168.624−3.5163702.761706.31163 × 10−3−0.74836−169.37236
    1.017.921416.7445−165.593−3.5094902.758596.21423 × 10−3−0.74469−166.33769
    DownLoad: CSV
  • [1]

    Debye P, Hückel E 1923 Z. Phys. 24 185

    [2]

    Shukla P K, Eliasson B 2008 Phys. Lett. A 372 2897Google Scholar

    [3]

    Chen Z B, Hu H W, Ma K, Liu X B, Guo X L, Li S, Zhu B H, Huang L, Wang K 2018 Phys. Plasmas 25 032108Google Scholar

    [4]

    Ray D 2000 Phys. Rev. E 62 4126Google Scholar

    [5]

    Wu Z Q, Han G X, Yan J, Pang J Q 2002 J. Phys. B 35 2305Google Scholar

    [6]

    Das M 2014 Phys. Plasmas 21 012709Google Scholar

    [7]

    Li Y Q, Wu J H, Hou Y, Yuan J M 2008 J. Phys. B 41 145002Google Scholar

    [8]

    Saha B, Fritzsche S 2007 J. Phys. B 40 259Google Scholar

    [9]

    Belkhiri M, Fontes C J, Poirier M 2015 Phys. Rev. A 92 032501Google Scholar

    [10]

    Fernley J A, Taylor K T, Seaton M J 1987 J. Phys. B 20 6457Google Scholar

    [11]

    Peach G, Saraph H E, Seaton M J 1988 J. Phys. B 21 3669Google Scholar

    [12]

    Fernley J A, Taylor K T, Seaton M J 1987 J. Phys. B 20 6457Google Scholar

    [13]

    Kaspi S, Brandt W N, Netzer H, Sambruna R, Chartas G, Garmire G P, Nousek J A 2000 Astrophys. J. Lett. 535 L17Google Scholar

    [14]

    Saha B, Bhattacharyya S, Mukherjee T K, Mukherjee P K 2003 Int. J. Quantum Chem. 92 413Google Scholar

    [15]

    Costa A M, Martins M C, Parente F, Santos J P, Indelicato P 2001 Atom. Data Nucl. Dat. 79 223Google Scholar

    [16]

    Goryaev F F, Vainshtein L A, Urnov A M 2017 Atom. Data Nucl. Dat. 113 117Google Scholar

    [17]

    Saha J K, Bhattacharyya S, Mukherjee T K, Mukherjee P K 2010 J. Quant. Spectrosc. Radiat. Transfer 111 675Google Scholar

    [18]

    Fang T K, Wu C S, Gao X, Chang T N 2017 Phys. Rev. A 96 052502Google Scholar

    [19]

    Kar S, Ho Y K 2005 Chem. Phys. Lett. 402 544Google Scholar

    [20]

    Xie L Y, Wang J G, Janev R K, Qu Y Z, Dong C Z 2012 Eur. Phys. J. D 66 125Google Scholar

    [21]

    Chen Z B 2017 Phys. Plasmas 24 122119Google Scholar

    [22]

    Chen Z B, Ma K, Hu H W, Wang K 2018 Phys. Plasmas 25 072120Google Scholar

    [23]

    Chaudhuri S K, Mukherjee P K, Fricke B 2017 Eur. Phys. J. D 71 71Google Scholar

    [24]

    Hu H W, Chen Z B, Chen W C 2016 Radiat. Eff. Defect. S. 171 890Google Scholar

    [25]

    Ray D, Mukherjee P K 1998 J. Phys. B 31 3479Google Scholar

    [26]

    Ray D, Mukherjee P K 1998 Eur. Phys. J. D 2 89Google Scholar

  • [1] Yang Wen-Yuan, Dong Ye, Sun Hui-Fang, Yang Yu-Lin, Dong Zhi-Wei. Physical analysis and numerical simulations of ultra wideband plasma relativistic microwave noise amplifier. Acta Physica Sinica, 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [2] He Xin, Jiang Tao, Gao Cheng, Zhang Zhen-Fu, Yang Jun-Bo. A simplified method of calculating electronic energy level populations in nonequilibrium plasmas. Acta Physica Sinica, 2021, 70(14): 145202. doi: 10.7498/aps.70.20202119
    [3] Li Yao-Jun, Yue Dong-Ning, Deng Yan-Qing, Zhao Xu, Wei Wen-Qing, Ge Xu-Lei, Yuan Xiao-Hui, Liu Feng, Chen Li-Ming. Proton imaging of relativistic laser-produced near-critical-density plasma. Acta Physica Sinica, 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [4] Mu Zhi-Dong. Theoretical study of energy levels and transitions 4s24p3−4s4p4 for ions Rh XIII to Cd XVI. Acta Physica Sinica, 2019, 68(6): 063101. doi: 10.7498/aps.68.20181976
    [5] Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping. Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+. Acta Physica Sinica, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [6] Wang Yu, Chen Zai-Gao, Lei Yi-An. Simulation of 0.14 THz relativistic backward-wave oscillator filled with plasma. Acta Physica Sinica, 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [7] Hu Feng, Yang Jia-Min, Wang Chuan-Ke, Zhang Ji-Yan, Jiang Gang, Zhu Zheng-He. Influence of electron correlation on Au ions. Acta Physica Sinica, 2011, 60(10): 103104. doi: 10.7498/aps.60.103104.1
    [8] Li De-Jun, Mi Xian-Wu, Deng Ke. Energy levels and magnetic moments of the quantum solitary wave in a one-dimensional ferromagnetic chain. Acta Physica Sinica, 2010, 59(10): 7344-7349. doi: 10.7498/aps.59.7344
    [9] Sun Yan, Gou Bing-Cong, Zhu Jing-Jing. Energies, fine structures, and Auger widths of the high-lying triply excited states of 2S(m) and 2D(m) (m=2—7) for the “hollow atom” lithium. Acta Physica Sinica, 2010, 59(6): 3878-3884. doi: 10.7498/aps.59.3878
    [10] Tian Yang-Meng, Wang Cai-Xia, Jiang Ming, Cheng Xin-Lu, Yang Xiang-Dong. State equation of inert plasma. Acta Physica Sinica, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [11] Wang Bin, Tang Chang-Jian, Liu Pu-Kun. Cherenkov radiation of relativistic electron beam in the ion-channel. Acta Physica Sinica, 2006, 55(11): 5953-5958. doi: 10.7498/aps.55.5953
    [12] Liu Shao-Bin, Zhu Chuan-Xi, Yuan Nai-Chang. FDTD simulation for plasma photonic crystals. Acta Physica Sinica, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [13] Wu Guo-Hua, Guo Hong, Liu Ming-Wei, Deng Dong-Mei, Liu Shi-Xiong. Comparison of wakefield and relativistic effects on the self-phase modulation and frequency shift of intense laser pulse propagation. Acta Physica Sinica, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
    [14] Zeng Xiong-Hui, Zhao Guang-Jun, Zhang Lian-Han, He Xiao-Ming, Hang-Yin, Li Hong-Jun, Xu Jun. The energy levels structure and fluorescence properties of Ce3+ in LaAlO3 single crystals. Acta Physica Sinica, 2005, 54(2): 612-616. doi: 10.7498/aps.54.612
    [15] Hou Chun-Feng, Guo Ru-Hai. Energy structures of the elliptic cylindrical quantum dots. Acta Physica Sinica, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [16] Chen Hong, Mei Hua, Shen Peng-Nian, Jiang Huan-Qing. Heavy quarkonium mass spectra in a relativistic quark model. Acta Physica Sinica, 2005, 54(3): 1136-1141. doi: 10.7498/aps.54.1136
    [17] Liu Yu-Xiao, Zhao Zhen-Hua, Wang Yong-Qiang, Chen Yu-Hong. Variational calculations and relativistic corrections to the nonrelativistic ground energies of the helium atom and the helium-like ions. Acta Physica Sinica, 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [18] Tang Chang-Jian, Gong Yu-Bin, Yang Yu-Zhi. Dielectric tensor of 2D relativistic motional plasma. Acta Physica Sinica, 2004, 53(4): 1145-1149. doi: 10.7498/aps.53.1145
    [19] Zhu Jia-Qi, Wang Jing-He, Meng Song-He, Han Jie-Cai, Zhang Lian-Sheng. The microstructure and properties of tetrahedral amorphous carbon films deposited by filtered arc with accelerating at different energetic grades. Acta Physica Sinica, 2004, 53(4): 1150-1156. doi: 10.7498/aps.53.1150
    [20] Mao Hua-Ping, Wang Hong-Yan, Tang Yong-Jian, Zhu Zheng-He, Zheng Sao-Tao. The effects of charge on the potential energy function and energy levels for Cu2n±(n=0,1,2). Acta Physica Sinica, 2004, 53(1): 37-41. doi: 10.7498/aps.53.37
Metrics
  • Abstract views:  10144
  • PDF Downloads:  36
  • Cited By: 0
Publishing process
  • Received Date:  27 October 2018
  • Accepted Date:  10 December 2018
  • Available Online:  01 January 2019
  • Published Online:  20 January 2019

/

返回文章
返回