Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and experimental analysis of W-band extended interaction klystron amplifier

Zeng Zao-Jin Hu Lin-Lin Ma Qiao-Sheng Jiang Yi Chen Hong-Bin

Citation:

Design and experimental analysis of W-band extended interaction klystron amplifier

Zeng Zao-Jin, Hu Lin-Lin, Ma Qiao-Sheng, Jiang Yi, Chen Hong-Bin
PDF
HTML
Get Citation
  • Beam loading is an important parameter in extended interaction klystron, which can be used to analyze the influence of beam on resonant frequency and ohm loss Q, and study the match condition between input cavity and external power source, etc. Based on the kinematical theory, law of induce current, principle of charge conservation under the small signal condition, and one-dimensional (1D) mode, the transit time effect of electron in ${\text{π}}$ mode standing wave electric treld in a multiple-gap resonator is analyzed, and the expressions of electron load conductance and electron load susceptance in the multiple-gap resonator are presented. The results show that the electron load conductance of extended interaction cavity can change in a bigger extension than that of traditional single gap cavity, which means that the loaded Q of extended interaction cavity can be adjusted in a bigger extension to realize a desired Q. And the results also show that the electron load susceptance of extended interaction cavity can change in a bigger extension than that of traditional single gap cavity, which means that the loaded frequency of extended interaction cavity can also be easily adjusted to a desired value. The influence of gap number on the power exchange between beam and microwave is also investigated, which shows that the maximum power exchange between beam and microwave electric field increases with the number of resonator gaps increasing, and so does the efficiency of klystron. A W band extended interaction klystron amplifoer is designed by the above theory analysis and three-dimensional (3D) PIC code. The simulation results show that when beam voltage is 20.8 kV, current is 0.28 A, input power is 30 mW at a frequency of 94.77 GHz, the extended interaction klystron can produce 443 W output power. The responding electron efficiency is 7.6%, the gain is 41.7 dB, and the 3 dB bandwidth exceeds 150 MHz. The extended interaction klystron is machined and tested, and the experimental results show that the maximum output power of 175 W is obtained with a beam of 300 mA, a voltage of 20.8 kV, and an input microwave power of 30 mW at a frequency of 95.37 GHz in a magnetic field of 0.62 T. The responding electron efficiency is 2.8%, the gain is 34.6 dB, the 3-dB bandwidth exceeds 90 MHz. This study is meaningful for designing and developing greater power extended interaction klystrons.
      Corresponding author: Chen Hong-Bin, 17721915695@163.com
    [1]

    Toreev A I, Fedorov V K, Patrusheva E V 2009 J. Commun. Technol. Electron. 54 952Google Scholar

    [2]

    Brian S, Albert R, Peter H, Mark H, Richard D, Dave B IEEE Pulse Power Plasma Science Conference Albuquerque, USA, June 17−22, 2007 p1049

    [3]

    Brian S, Albert R, Peter H, Mark H, Richard D, Dave B IEEE Radar Conference Pasadena, USA, May 4−8, 2009 p1

    [4]

    Toreev A I, Fedorov V K 2011 Appl. Phys. 52 109

    [5]

    吴洋, 许州, 周霖, 李文君, 唐传祥 2012 物理学报 61 224101Google Scholar

    Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101Google Scholar

    [6]

    刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 物理学报 64 108404

    Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404

    [7]

    丁耀根 2010 大功率速调管的设计制造和应用 (北京: 国防工业出版社) 第8—17页

    Ding Y G 2010 Design, Manufacture and Application of High Power Klystron (Beijing: National Defense Industry Press) pp8−17 (in Chinese)

    [8]

    Albert R, Dave B, Brian S 2005 IEEE Trans. Electron Devices 52 895Google Scholar

    [9]

    Brian S, Albert R, Peter H, Mark H, Richard D, Dave B 2011 41st European Microwave Conference Manchester, UK, Oct 10−13, 2011 p984

    [10]

    Peter H, Dave B, Brian S IEEE International Vacuum Electronics Conference Kitakytushu, Japan, May 15−17, 2007 p149

    [11]

    韦莹, 殷亮, 杨继涛, 周军, 李东凤, 欧阳佳佳, 窦钺, 钟勇 2018 中国电子学会真空电子学分会第二十一届学术年会 中国平凉 2018年8月23—26日 第218页

    Wei Y, Yin L, Yang J T, Zhou J, Li D F, Ouyang J J, Dou Y, Zhong Y 2018 The Chinese Institute of Electronics Conference on Vacuum Electronics Pingliang, China, Aug. 23−26, 2018 p218 (in Chinese)

    [12]

    范植开, 刘庆想, 刘锡三, 周传民, 胡海膺 1999 强激光与粒子束 11 633

    Fan Z K, Liu Q X, Liu X S, Zhou C M, Hu H Y 1999 High Power Laser and Particle Beams 11 633

    [13]

    Zhao Y C, Li S F, Huang H, Liu Z B, Wang Z L, Dan Z Y, Li X Y, Wei Y Y, Gong Y B 2015 IEEE Trans. Plasma Sci. 43 1862Google Scholar

    [14]

    Marcum J 1946 J. Appl. Phys. 17 4Google Scholar

    [15]

    Marder B M, Clark M C, Bacon L D, Hoffman J M, Lemke R W, Coleman P D 1992 IEEE Trans. Plasma Sci. 20 312Google Scholar

    [16]

    Yuan Y S, Li K W, Wang N, Yoshiro I, Wang S 2015 Chin. Phys. C 39 047003Google Scholar

    [17]

    曾造金 2014 硕士学位论文(成都: 电子科技大学)

    Zeng Z J 2014 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [18]

    谢家麟, 赵永翔1966 速调管群聚理论(北京: 科学出版社) 第33—37页

    Xie J L, Zhao Y X 1966 Bunching Theory of Klystron (Beijing: Science Press) p33−37 (in Chinese)

    [19]

    Li R J, Ruan C J, Zhang H F, Haq T U, He Y B, Shan S Y 2018 IEEE Trans. Electron Devices 65 3500Google Scholar

    [20]

    丁耀根 2008 大功率速调管的理论与计算模拟(北京: 国防工业出版社) 第75 页

    Ding Y G 2008 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) p75 (in Chinese)

    [21]

    张泽海, 舒挺, 张军, 戚祖敏 2013 物理学报 62 040701Google Scholar

    Zhang Z H, Shu T, Zhang J, Qi Z M 2013 Acta Phys. Sin. 62 040701Google Scholar

    [22]

    陈永东, 金晓, 李正红, 黄华, 吴洋 2012 物理学报 61 228501Google Scholar

    Chen Y D, Jin X, Li Z H, Huang H, Wu Y 2012 Acta Phys. Sin. 61 228501Google Scholar

    [23]

    Bi L J, Yin Y, Xu C P, Zhang Z, Chang Z W, Zeng F B, Peng R B, Zhou W, Rauf A, Ullah S, Wang B, Li H L, Meng L 2017 IEEE Trans. Electron Devices 64 4686Google Scholar

  • 图 1  谐振腔等效电路

    Figure 1.  Equivalent circuit mode of cavity.

    图 2  引入电子注后谐振腔等效电路

    Figure 2.  Equivalent circuit mode of cavity with beam.

    图 3  多间隙谐振腔${\text{π}}$模场示意图

    Figure 3.  E-field of ${\text{π}}$ mode in multiple-gap cavity.

    图 4  多间隙谐振腔${\text{π}}$模场简化图

    Figure 4.  Simplified E-field of ${\text{π}}$ mode in multiple-gap cavity.

    图 5  归一化电子负载电导与渡越角的关系

    Figure 5.  GbN/G0 versus θ0 of multiple-gap cavity.

    图 6  归一化电子负载电纳与渡越角的关系

    Figure 6.  BbN/G0 versus θ0 of multiple-gap cavity.

    图 7  BbN为正值谐振腔等效电路

    Figure 7.  Equivalent circuit mode of cavity when BbN > 0.

    图 8  BbN为负值时谐振腔等效电路

    Figure 8.  Equivalent circuit mode of cavity when BbN < 0.

    图 9  分布作用速调管高频结构模型

    Figure 9.  Model of the extended interaction cavity.

    图 10  输入腔各模式Ez沿轴向的分布

    Figure 10.  Ez versus axial distance of each mode in input cavity

    图 11  中间腔各模式Ez沿轴向的分布

    Figure 11.  Ez versus axial distance of each mode in middle cavity.

    图 12  输入腔各模式Qtotal与电压U的关系

    Figure 12.  Qtotal versus U of each mode in input cavity.

    图 13  中间腔各模式Qtotal与电压U的关系

    Figure 13.  Qtotal versus U of each mode in middle cavity.

    图 14  瞬时输入功率波形

    Figure 14.  Waveform of input microwave.

    图 15  调制电流基频分量沿轴向的分布

    Figure 15.  fundamental modulated current amplitude versus axial distance.

    图 16  瞬时输出功率波形

    Figure 16.  Waveform of output microwave.

    图 17  输出功率与输入信号频率的关系

    Figure 17.  Output power versus input frequency.

    图 18  分布作用速调管实物

    Figure 18.  Picture of extended interaction klystron.

    图 19  分布作用速调管测试系统

    Figure 19.  Test system of extended interaction klystron.

    图 20  高频样管测试结果

    Figure 20.  Test result of extended interaction klystron.

    图 21  高频样管输出功率与输入信号频率的关系

    Figure 21.  Measured output power vs input frequency.

  • [1]

    Toreev A I, Fedorov V K, Patrusheva E V 2009 J. Commun. Technol. Electron. 54 952Google Scholar

    [2]

    Brian S, Albert R, Peter H, Mark H, Richard D, Dave B IEEE Pulse Power Plasma Science Conference Albuquerque, USA, June 17−22, 2007 p1049

    [3]

    Brian S, Albert R, Peter H, Mark H, Richard D, Dave B IEEE Radar Conference Pasadena, USA, May 4−8, 2009 p1

    [4]

    Toreev A I, Fedorov V K 2011 Appl. Phys. 52 109

    [5]

    吴洋, 许州, 周霖, 李文君, 唐传祥 2012 物理学报 61 224101Google Scholar

    Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101Google Scholar

    [6]

    刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 物理学报 64 108404

    Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404

    [7]

    丁耀根 2010 大功率速调管的设计制造和应用 (北京: 国防工业出版社) 第8—17页

    Ding Y G 2010 Design, Manufacture and Application of High Power Klystron (Beijing: National Defense Industry Press) pp8−17 (in Chinese)

    [8]

    Albert R, Dave B, Brian S 2005 IEEE Trans. Electron Devices 52 895Google Scholar

    [9]

    Brian S, Albert R, Peter H, Mark H, Richard D, Dave B 2011 41st European Microwave Conference Manchester, UK, Oct 10−13, 2011 p984

    [10]

    Peter H, Dave B, Brian S IEEE International Vacuum Electronics Conference Kitakytushu, Japan, May 15−17, 2007 p149

    [11]

    韦莹, 殷亮, 杨继涛, 周军, 李东凤, 欧阳佳佳, 窦钺, 钟勇 2018 中国电子学会真空电子学分会第二十一届学术年会 中国平凉 2018年8月23—26日 第218页

    Wei Y, Yin L, Yang J T, Zhou J, Li D F, Ouyang J J, Dou Y, Zhong Y 2018 The Chinese Institute of Electronics Conference on Vacuum Electronics Pingliang, China, Aug. 23−26, 2018 p218 (in Chinese)

    [12]

    范植开, 刘庆想, 刘锡三, 周传民, 胡海膺 1999 强激光与粒子束 11 633

    Fan Z K, Liu Q X, Liu X S, Zhou C M, Hu H Y 1999 High Power Laser and Particle Beams 11 633

    [13]

    Zhao Y C, Li S F, Huang H, Liu Z B, Wang Z L, Dan Z Y, Li X Y, Wei Y Y, Gong Y B 2015 IEEE Trans. Plasma Sci. 43 1862Google Scholar

    [14]

    Marcum J 1946 J. Appl. Phys. 17 4Google Scholar

    [15]

    Marder B M, Clark M C, Bacon L D, Hoffman J M, Lemke R W, Coleman P D 1992 IEEE Trans. Plasma Sci. 20 312Google Scholar

    [16]

    Yuan Y S, Li K W, Wang N, Yoshiro I, Wang S 2015 Chin. Phys. C 39 047003Google Scholar

    [17]

    曾造金 2014 硕士学位论文(成都: 电子科技大学)

    Zeng Z J 2014 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [18]

    谢家麟, 赵永翔1966 速调管群聚理论(北京: 科学出版社) 第33—37页

    Xie J L, Zhao Y X 1966 Bunching Theory of Klystron (Beijing: Science Press) p33−37 (in Chinese)

    [19]

    Li R J, Ruan C J, Zhang H F, Haq T U, He Y B, Shan S Y 2018 IEEE Trans. Electron Devices 65 3500Google Scholar

    [20]

    丁耀根 2008 大功率速调管的理论与计算模拟(北京: 国防工业出版社) 第75 页

    Ding Y G 2008 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) p75 (in Chinese)

    [21]

    张泽海, 舒挺, 张军, 戚祖敏 2013 物理学报 62 040701Google Scholar

    Zhang Z H, Shu T, Zhang J, Qi Z M 2013 Acta Phys. Sin. 62 040701Google Scholar

    [22]

    陈永东, 金晓, 李正红, 黄华, 吴洋 2012 物理学报 61 228501Google Scholar

    Chen Y D, Jin X, Li Z H, Huang H, Wu Y 2012 Acta Phys. Sin. 61 228501Google Scholar

    [23]

    Bi L J, Yin Y, Xu C P, Zhang Z, Chang Z W, Zeng F B, Peng R B, Zhou W, Rauf A, Ullah S, Wang B, Li H L, Meng L 2017 IEEE Trans. Electron Devices 64 4686Google Scholar

  • [1] Zeng Zao-Jin, Ma Qiao-Sheng, Hu Lin-Lin, Jiang Yi, Hu Peng, Lei Wen-Qiang, Ma Guo-Wu, Chen Hong-Bin. Theoretical analysis and simulation of W-band sheet beam extended interaction klystron amplifier. Acta Physica Sinica, 2019, 68(24): 248401. doi: 10.7498/aps.68.20190907
    [2] Zeng Zao-Jin, Ma Qiao-Sheng, Hu Lin-Lin, Jiang Yi, Hu Peng, Chen Hong-Bin. Theoretical analysis and design of G-band extended interaction klystron amplifier. Acta Physica Sinica, 2019, 68(15): 154102. doi: 10.7498/aps.68.20190264
    [3] Liu Zhen-Bang, Zhao Yu-Cong, Huang Hua, Jin Xiao, Lei Lu-Rong. Analysis and design of a Ka-band sheet beam relativistic extended interaction klystron amplifier. Acta Physica Sinica, 2015, 64(10): 108404. doi: 10.7498/aps.64.108404
    [4] Xue Zhi-Hao, Liu Pu-Kun, Du Chao-Hai. Research on non-linear beam-wave interaction of W-band Gyro-TWT with helical waveguide. Acta Physica Sinica, 2014, 63(8): 080201. doi: 10.7498/aps.63.080201
    [5] Chen Yong-Dong, Wu Yang, Xie Hong-Quan, Li Zheng-Hong, Zhou Zi-Gang. Nonlinear interaction between modulated electron beam and the intermediate cavity of RKA. Acta Physica Sinica, 2013, 62(10): 104104. doi: 10.7498/aps.62.104104
    [6] Liu Guo, Wang Jian-Xun, Luo Yong. Improved design of quasi-optical output coupler for a W-band multicavity sheet beam klystron. Acta Physica Sinica, 2013, 62(7): 078404. doi: 10.7498/aps.62.078404
    [7] Xie Wen-Qiu, Wang Zi-Cheng, Luo Ji-Run, Liu Qing-Lun, Dong Fang. Design and simulation of W-band BWO based on slotted single-grating and cylindrical beam. Acta Physica Sinica, 2013, 62(15): 158503. doi: 10.7498/aps.62.158503
    [8] Xue Zhi-Hao, Liu Pu-Kun, Du Chao-Hai, Li Zheng-Di. Research on non-linear beam-wave interaction of W-band gyro-TWT with helical waveguide. Acta Physica Sinica, 2012, 61(17): 170201. doi: 10.7498/aps.61.170201
    [9] Liu Wei-Hao, Zhang Ya-Xin, Hu Min, Zhou Jun, Liu Sheng-Gang. Mechanism study of a THz source using field emission array. Acta Physica Sinica, 2012, 61(12): 127901. doi: 10.7498/aps.61.127901
    [10] Wu Yang, Xu Zhou, Zhou Lin, Li Wen-Jun, Tang Chuan-Xiang. Simulation and design of a W-band extended interaction klystron amplifier. Acta Physica Sinica, 2012, 61(22): 224101. doi: 10.7498/aps.61.224101
    [11] Wang Bin, Du Chao-Hai, Liu Pu-Kun, Geng Zhi-Hui, Xu Shou-Xi. Study and design of a quasi-optical mode converter for W-band whispering-gallery mode gyrotron. Acta Physica Sinica, 2010, 59(4): 2512-2518. doi: 10.7498/aps.59.2512
    [12] Du Jian, Zhang Peng, Liu Ji-Hong, Li Jin-Liang, Li Yu-Xian. Spin-tunneling time and transport in a ferromagnetic/semiconductor/ferromagnetic heterojunction with a δ tunnel barrier. Acta Physica Sinica, 2008, 57(11): 7221-7227. doi: 10.7498/aps.57.7221
    [13] Study of the harmonics of coherent transition radiation emitted by hot electrons generated in ultra-intense laser plasma interaction due to different heating mechanism. Acta Physica Sinica, 2007, 56(12): 7132-7137. doi: 10.7498/aps.56.7132
    [14] Wang Guang-Chang, Zheng Zhi-Jian, Gu Yu-Qiu, Chen Tao, Zhang Ting. Study of transport of hot electrons in solid targets using transition radiation. Acta Physica Sinica, 2007, 56(2): 982-987. doi: 10.7498/aps.56.982
    [15] Lai Guo-Jun, Liu Pu-Kun. Simulation and design of a W-band second-harmonic gyrotron traveling wave amplifier. Acta Physica Sinica, 2007, 56(8): 4515-4522. doi: 10.7498/aps.56.4515
    [16] Yuan Xiao-Hui, Li Yu-Tong, Xu Miao-Hua, Yu Quan-Zhi, Wang Shou-Jun, Zhang Jie, Zhao Wei, Wang Guang-Chang, Wen Xian-Lun, Jiao Chun-Ye, He Ying-Ling, Zhang Shuang-Gen, Wang Xiang-Xian, Huang Wen-Zhong, Gu Yu-Qiu. Observation of the rear-side coherent transition radiation generated by hot electrons. Acta Physica Sinica, 2006, 55(10): 5362-5367. doi: 10.7498/aps.55.5362
    [17] Lai Guo-Jun, Liu Pu-Kun. Simulation and design of a W-band gyrotron traveling wave amplifier. Acta Physica Sinica, 2006, 55(1): 321-325. doi: 10.7498/aps.55.321
    [18] JIANG HUA-BEI. A STIMULATED TRANSITION RADIATION OPTICAL KLYSTRON. Acta Physica Sinica, 1990, 39(1): 61-66. doi: 10.7498/aps.39.61-2
    [19] LIU FU-SUI, FAN XI-QING, LIU YAN-ZHANC, WANG HUAI-SHENG, RUAN YING-CHAO. EFFECT OF ELECTRON-MANY PHONON INTERACTION ON SCATTERING TIME. Acta Physica Sinica, 1989, 38(1): 154-158. doi: 10.7498/aps.38.154
    [20] LIU SHENG-GANG, SUN YAN. A STUDY ON THE RELATIONSHIP BETWEEN THE SPONTANEOUS RADIATION AND THE STIMULATED RADIATION IN TRANSITION RADIATION FREE ELECTRON LASERS. Acta Physica Sinica, 1988, 37(9): 1505-1509. doi: 10.7498/aps.37.1505
Metrics
  • Abstract views:  6632
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  13 December 2018
  • Accepted Date:  09 January 2019
  • Available Online:  01 April 2019
  • Published Online:  20 April 2019

/

返回文章
返回