Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phonon blockade induced by a non-Hermitian Hamiltonian in a nanomechanical resonator coupled with a qubit

Liao Qing-Hong Deng Wei-Can Wen Jian Zhou Nan-Run Liu Nian-Hua

Citation:

Phonon blockade induced by a non-Hermitian Hamiltonian in a nanomechanical resonator coupled with a qubit

Liao Qing-Hong, Deng Wei-Can, Wen Jian, Zhou Nan-Run, Liu Nian-Hua
PDF
HTML
Get Citation
  • Nanomechanical resonator has important applications in the field of high-precision detection because it has a high-Q factor, high vibration frequency, small size, and other excellent characteristics. Superconducting qubit has very large magnetic dipole moments, so it can be easily combined with nanomechanical resonator. Furthermore, the system parameters including frequency and coupling strength can be designed according to requirements beforehand, which makes a superconducting qubit an ideal artificial atom. Compared with natural atom, superconducting qubit has abundant energy levels. For these reasons, nanomechanical system has aroused wide interest in the engineering, electron, physical and other fields of science and technology. According to the recent research, a new approach to the zero eigenvalues of non-Hermitian Hamiltonian is applied to the optomechanical system. It was found that the scheme is superior to conventional photon blockade (CPB) and unconventional photon blockade (UPB) in the cavity quantum electrodynamics (QED) system. So we propose a scheme to induce phonon blockade in order to explore a new avenue to the research about phonon blockades in the quantum open system. We study the phonon blockade in an optomechanical system that a qubit is coupled with nanomechanical resonator (NAMR) driven by two external weakly driving fields respectively in this way. In this paper, the Hamiltonian of such a system can be treated by the non-Hermitian Hamiltonian and it can be described in the form of matrix. Then the phenomenon of phonon blockade occurs when all the eigenvalues in the form of matrix are equal to zero. It is found that strong phonon antibunching can be triggered in both strong and weak nonlinearity when we use the method which has been already used in a gain optical cavity system. The distinct result reflects the advantage of our approach which possesses some outstanding characters between the ordinary methods (conventional phonon blockade and unconventional phonon blockade). In addition, the effect of our avenue on phonon blockade is analyzed and also the distinction between the conventional phonon blockade (CPNB) and unconventional phonon blockade (UPNB) is compared with each other in detail. By analytical calculation, the optimal conditions are given and the underlying physical mechanism is explained. In the comparison between CPNB and UPNB, we show the superiority of our scheme through some graphs. Finally, we describe briefly the measurements of phonon blockade in the NAMR-qubit system via a superconducting cavity. The proposal may provide a theoretical way to guide the manufacture of phonon devices in the future. The results obtained here may have a great significance and application in the field of quantum information processing and precision measurement.
      Corresponding author: Liao Qing-Hong, nculqh@163.com
    [1]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [2]

    Armour A D, Blencowe M P, Schwab K C 2002 Phys. Rev. Lett. 88 148301Google Scholar

    [3]

    Blencowe M 2004 Phys. Rep. 395 159Google Scholar

    [4]

    Cleland A N, Geller M R 2004 Phys. Rev. Lett. 93 070501Google Scholar

    [5]

    O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697Google Scholar

    [6]

    Liu Y X, Miranowicz A, Gao Y B, Bajer J, Sun C P, Nori F 2010 Phys. Rev. A 82 032101Google Scholar

    [7]

    Imamoglu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467Google Scholar

    [8]

    Barzanjeh S, Vitali D 2016 Phys. Rev. A 93 033846Google Scholar

    [9]

    Zhou Y H, Shen H Z, Yi X X 2015 Phys. Rev. A 92 023838Google Scholar

    [10]

    Zhou Y H, Shen H Z, Shao X Q, Yi X X 2016 Opt. Express 24 17332Google Scholar

    [11]

    石海泉, 谢智强, 徐勋卫, 刘念华 2018 物理学报 67 044203Google Scholar

    Shi H Q, Xie Z Q, Xu X W, Liu N H 2018 Acta Phys. Sin. 67 044203Google Scholar

    [12]

    Cai K, Pan Z W, Wang R X, Ruan D, Yin Z Q, Long G L 2018 Opt. Lett. 43 1163Google Scholar

    [13]

    Miranowicz A, Bajer J, Lambert N, Liu Y X, Nori F 2016 Phys. Rev. A 93 013808Google Scholar

    [14]

    Wang X, Miranowicz A, Li H R, Nori F 2016 Phys. Rev. A 93 063861Google Scholar

    [15]

    Ramos T, Sudhir V, Stannigel K, Zoller P, Kippenberg T J 2013 Phys. Rev. Lett. 110 193602Google Scholar

    [16]

    Xu X W, Chen A X, Liu Y X 2016 Phys. Rev. A 94 063853Google Scholar

    [17]

    Gerace D, Savona V 2014 Phys. Rev. A 89 031803Google Scholar

    [18]

    Lemonde M A, Didier N, Clerk A A 2014 Phys. Rev. A 90 063824Google Scholar

    [19]

    Bamba M, Imamoğlu A, Carusotto I, Ciuti C 2011 Phys. Rev. A 83 021802Google Scholar

    [20]

    Qian Z, Zhao M M, Hou B P, Zhao Y H 2017 Opt. Express 25 33097Google Scholar

    [21]

    Shi H Q, Zhou X T, Xu X W, Liu N H 2018 Sci. Rep. 2018 2212

    [22]

    Kong C, Li S, You C, Xiong H, Wu Y 2018 Sci. Rep. 8 1060Google Scholar

    [23]

    Li G, Xiao X, Li Y, Wang X 2018 Phys. Rev. A 97 023801Google Scholar

    [24]

    Guan S, Bowen W P, Liu C, Duan Z 2017 EPL 119 58001Google Scholar

    [25]

    Xie H, Liao C G, Shang X, Ye M Y, Lin X M 2017 Phys. Rev. A 96 013861Google Scholar

    [26]

    Yin T S, Lu X Y, Wan L L, Bin S W, Wu Y 2018 Opt. Lett. 43 2050Google Scholar

    [27]

    Debnath S, Linke N M, Wang S T, Figgatt C, Landsman K A, Duan L M, Monroe C 2018 Phys. Rev. Lett. 120 073001Google Scholar

    [28]

    Li S S 2018 Int. J. Theor. Phys. 57 2359Google Scholar

    [29]

    Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [30]

    Longhi S 2017 J. Phys. A: Math. Theor. 50 505201Google Scholar

    [31]

    Park K W, Kim J, Jeong K 2016 Opt. Commun. 368 190Google Scholar

    [32]

    Khantoul B, Bounames A, Maamache M 2017 Eur. Phys. J. Plus 132 258Google Scholar

    [33]

    Baradaran M, Panahi H 2017 Chin. Phys. B 26 060301Google Scholar

    [34]

    Maamache M, Lamri S, Cherbal O 2017 Ann. Phys. 378 150Google Scholar

    [35]

    Sergi A, Giaquinta P 2016 Entropy 18 451Google Scholar

    [36]

    Miao Y G, Xu Z M 2016 Phys. Lett. A 380 1805Google Scholar

    [37]

    Ferry D K, Akis R, Burke A M, Knezevic I, Brunner R, Bird J P, Meisels R, Kuchar F, Bird J P 2013 Fortschr. Phys. 61 291Google Scholar

    [38]

    Sergi A, Zloshchastiev K G 2016 J. Stat. Mech: Theory Exp. 2016 033102Google Scholar

    [39]

    Chen J H, Fan H Y 2012 Front. Phys. 7 632Google Scholar

    [40]

    Greenberg Y S, Shtygashev A A 2015 Phys. Rev. A 92 063835Google Scholar

    [41]

    Zloshchastiev K G 2015 Eur. Phys. J. D 69 253Google Scholar

    [42]

    Bagarello F, Lattuca M, Passante R, Rizzuto L, Spagnolo S 2015 Phys. Rev. A 91 042134Google Scholar

    [43]

    Giusteri G G, Mattiotti F, Celardo G L 2015 Phys. Rev. B 91 094301Google Scholar

    [44]

    Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819Google Scholar

    [45]

    Li J, Yu R, Wu Y 2015 Phys. Rev. A 92 053837Google Scholar

    [46]

    Xing Y, Qi L, Cao J, Wang D Y, Bai C H, Wang H F, Zhu A D, Zhang S 2017 Phys. Rev. A 96 043810Google Scholar

    [47]

    Peng B, Ozdemir S K, Rotter S, Yilmaz H, Liertzer M, Monifi F, Bender C M, Nori F, Yang L 2014 Science 346 328Google Scholar

    [48]

    Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photonics 8 524Google Scholar

    [49]

    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975Google Scholar

    [50]

    Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394Google Scholar

    [51]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [52]

    Fan L R, Fong K Y, Poot M, Tang H X 2015 Nat. Commun. 6 5850

    [53]

    Xiong C, Fan L R, Sun X K, Tang H X 2013 Appl. Phys. Lett 102 021110

    [54]

    Winger M, Blasius T D, Alegre T P M, Safavi Naeini A H, Meenehan S, Cohen J, Stobbe S, Painter O 2011 Opt. Express 19 24905Google Scholar

    [55]

    Zhang J, Peng B, Ozdemir S K, Liu Y X, Jing H, Lu X Y, Liu Y L, Yang L, Nori F 2015 Phys. Rev. B 92 115407

    [56]

    Bahl G, Tomes M, Marquardt F, Carmon T 2012 Nat. Phys. 8 203Google Scholar

    [57]

    Dong C H, Shen Z, Zou C L, Zhang Y L, Fu W, Guo G C 2015 Nat. Commun. 6 6193

    [58]

    Kepesidis K V, Milburn T J, Huber J, Makris K G, Rotter S, Rabl P 2016 New J. Phys. 18 095003

    [59]

    Xu X W, Liu Y X, Sun C P, Li Y 2015 Phys. Rev. A 92 013852

    [60]

    刘玉龙2017 博士学位论文 (北京: 清华大学)

    Liu Y L 2017 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [61]

    Didier N, Pugnetti S, Blanter Y M, Fazio R 2011 Phys. Rev. B 84 054503Google Scholar

  • 图 1  NAMR-量子比特系统的物理模型图

    Figure 1.  Schematic diagram of the nanomechanical resonator coupled with a qubit.

    图 2  外加驱动场共振的情况下声子阻塞现象的能级图 (a)满足(8)式时的能级图, 其中$\omega _ \pm ^{\left( 1 \right)} = {\omega _{\rm{m}}}$$\omega _ \pm ^{\left( 2 \right)} = 2{\omega _{\rm{m}}} \pm $ $2g + {\rm{i}}\dfrac{\gamma }{2}$; (b)满足(9)式时的能级图, 其中$\omega _ \pm ^{\left( 1 \right)} = {\omega _{\rm{m}}} \pm g$$\omega _ \pm ^{\left( 2 \right)} = 2{\omega _{\rm{m}}} \pm \sqrt 2 g + {\rm{i}}\dfrac{\gamma }{2}$

    Figure 2.  Schematic energy-level diagram explaining the occurrence of the phonon blockade by the driving field satisfying the resonance condition: (a) Energy-level diagram when Eqs. (8) are satisfied, where $\omega _ \pm ^{\left( 1 \right)} = {\omega _{\rm{m}}}$ and $\omega _ \pm ^{\left( 2 \right)} = 2{\omega _{\rm{m}}} \pm$ $ 2g + {\rm{i}}\dfrac{\gamma }{2}$; (b) energy-level diagram when Eqs. (9) are satisfied, where $\omega _ \pm ^{\left( 1 \right)} = {\omega _{\rm{m}}} \pm g$ and $\omega _ \pm ^{\left( 2 \right)} = 2{\omega _{\rm{m}}} \pm \sqrt 2 g + {\rm{i}}\dfrac{\gamma }{2}$.

    图 3  在不同的$g/\gamma $关系下, 二阶关联函数${g^{\left( 2 \right)}}\left( 0 \right)$$\varDelta /\gamma $的关系图 (a) $\kappa /\gamma = - 1$, $\varepsilon /\gamma = 0.1$, $\varOmega = 0$, $\varepsilon \ne 0$; (b) $\kappa /\gamma = - 1$, $\varOmega /\gamma = 0.1$, $\varepsilon = 0$, $\phi = 0$

    Figure 3.  Logarithmic plot (of base e) of the zero-delay-time second-order correlation functions ${g^{\left( 2 \right)}}\left( 0 \right)$ as a function of $\varDelta /\gamma $ for different $g/\gamma $ with $\kappa /\gamma = - 1$: (a) $\varepsilon /\gamma = 0.1$, $\varOmega = 0$, $\varepsilon \ne 0$; (b) $\varOmega /\gamma = 0.1$, $\varepsilon = 0$, $\phi = 0$.

    图 4  UPNB能级图

    Figure 4.  Schematic energy-level diagram of unconventional phonon blockade.

    图 5  本文方案与CPNB和UPNB的区别

    Figure 5.  Different parameter range for the CPNB, the UPNB, and the present scheme.

    图 6  二阶关联函数${g^{\left( 2 \right)}}\left( 0 \right)$ 和平均声子数$N = \left\langle {{a^ + }a} \right\rangle = \left[ {{\rm{Tr}}\left( {{\rho _s}{a^ + }a} \right)} \right]$的对数图像 (a), (b) $\varepsilon /\gamma = 0.1$, $\varOmega = 0$; (c), (d) $\varOmega /\gamma = 0.1$, $\varepsilon = 0$, $\phi = 0$. 其他参数为$\kappa /\gamma = - 1$.

    Figure 6.  The logarithmic plot (of base e) of the zero-delay-time second-order correlation functions ${g^{\left( 2 \right)}}\left( 0 \right)$ and average photon numberN: (a) and (b) $\varepsilon /\gamma = 0.1$, $\varOmega = 0$; (c) and (d) $\varOmega /\gamma = 0.1$, $\varepsilon = 0$, $\phi = 0$. The shared parameters: $\kappa /\gamma = - 1$.

    图 7  二阶关联函数${g^{\left( 2 \right)}}\left( 0 \right)$(对数)与$\varDelta /\gamma $的关系图, 其中$\varepsilon /\gamma = 0.1$, $\varOmega = 0$ (a) $g/\gamma = 0.5$, $\kappa /\gamma = - 1$(本文方案), $\kappa /\gamma = 1$(UPNB); (b) $g/\gamma = 5$, $\kappa /\gamma = - 1$(本文方案), $\kappa /\gamma = 1$(CPNB)

    Figure 7.  The logarithmic plot (of base e) of the zero-delay-time second-order correlation functions ${g^{\left( 2 \right)}}\left( 0 \right)$ as a function of $\varDelta /\gamma $. The shared parameters: $\varepsilon /\gamma = 0.1$, $\varOmega = 0$. Other parameters: (a) $g/\gamma = 0.5$, $\kappa /\gamma = - 1$(our scheme), $\kappa /\gamma = 1$ (UPNB); (b) $g/\gamma = 5$, $\kappa /\gamma = - 1$(our scheme), $\kappa /\gamma = 1$(CPNB).

    图 8  二阶关联函数${g^{\left( 2 \right)}}\left( 0 \right)$(对数)与$\varDelta /\gamma $的关系图, $\varOmega \ne 0$, $\varepsilon = 0$, $\phi = 0$ (a) $\varOmega /\gamma = 0.1$, $g/\gamma = 0.5$, $\kappa /\gamma = - 1$(本文方案), $\kappa /\gamma = 1$(UPNB); (b) $\varOmega /\gamma = 2$, $g/\gamma = 10$, $\kappa /\gamma = - 1$(本文方案), $\kappa /\gamma = 1$(CPNB)

    Figure 8.  The logarithmic plot (of base e) of the zero-delay-time second-order correlation functions ${g^{\left( 2 \right)}}\left( 0 \right)$ as a function of $\varDelta /\gamma $: $\varOmega \ne 0$, $\varepsilon = 0$, $\phi = 0$. Other parameters: (a) $\varOmega /\gamma = 0.1$, $g/\gamma = 0.5$, $\kappa /\gamma = - 1$(our scheme), $\kappa /\gamma = 1$ (UPNB); (b) $\varOmega /\gamma = 2$, $g/\gamma = 10$, $\kappa /\gamma = - 1$(our scheme), $\kappa /\gamma = 1$(CPNB).

    图 9  声子统计特性探测模型

    Figure 9.  The detecting model of the statistical properties of the phonons.

  • [1]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [2]

    Armour A D, Blencowe M P, Schwab K C 2002 Phys. Rev. Lett. 88 148301Google Scholar

    [3]

    Blencowe M 2004 Phys. Rep. 395 159Google Scholar

    [4]

    Cleland A N, Geller M R 2004 Phys. Rev. Lett. 93 070501Google Scholar

    [5]

    O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697Google Scholar

    [6]

    Liu Y X, Miranowicz A, Gao Y B, Bajer J, Sun C P, Nori F 2010 Phys. Rev. A 82 032101Google Scholar

    [7]

    Imamoglu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467Google Scholar

    [8]

    Barzanjeh S, Vitali D 2016 Phys. Rev. A 93 033846Google Scholar

    [9]

    Zhou Y H, Shen H Z, Yi X X 2015 Phys. Rev. A 92 023838Google Scholar

    [10]

    Zhou Y H, Shen H Z, Shao X Q, Yi X X 2016 Opt. Express 24 17332Google Scholar

    [11]

    石海泉, 谢智强, 徐勋卫, 刘念华 2018 物理学报 67 044203Google Scholar

    Shi H Q, Xie Z Q, Xu X W, Liu N H 2018 Acta Phys. Sin. 67 044203Google Scholar

    [12]

    Cai K, Pan Z W, Wang R X, Ruan D, Yin Z Q, Long G L 2018 Opt. Lett. 43 1163Google Scholar

    [13]

    Miranowicz A, Bajer J, Lambert N, Liu Y X, Nori F 2016 Phys. Rev. A 93 013808Google Scholar

    [14]

    Wang X, Miranowicz A, Li H R, Nori F 2016 Phys. Rev. A 93 063861Google Scholar

    [15]

    Ramos T, Sudhir V, Stannigel K, Zoller P, Kippenberg T J 2013 Phys. Rev. Lett. 110 193602Google Scholar

    [16]

    Xu X W, Chen A X, Liu Y X 2016 Phys. Rev. A 94 063853Google Scholar

    [17]

    Gerace D, Savona V 2014 Phys. Rev. A 89 031803Google Scholar

    [18]

    Lemonde M A, Didier N, Clerk A A 2014 Phys. Rev. A 90 063824Google Scholar

    [19]

    Bamba M, Imamoğlu A, Carusotto I, Ciuti C 2011 Phys. Rev. A 83 021802Google Scholar

    [20]

    Qian Z, Zhao M M, Hou B P, Zhao Y H 2017 Opt. Express 25 33097Google Scholar

    [21]

    Shi H Q, Zhou X T, Xu X W, Liu N H 2018 Sci. Rep. 2018 2212

    [22]

    Kong C, Li S, You C, Xiong H, Wu Y 2018 Sci. Rep. 8 1060Google Scholar

    [23]

    Li G, Xiao X, Li Y, Wang X 2018 Phys. Rev. A 97 023801Google Scholar

    [24]

    Guan S, Bowen W P, Liu C, Duan Z 2017 EPL 119 58001Google Scholar

    [25]

    Xie H, Liao C G, Shang X, Ye M Y, Lin X M 2017 Phys. Rev. A 96 013861Google Scholar

    [26]

    Yin T S, Lu X Y, Wan L L, Bin S W, Wu Y 2018 Opt. Lett. 43 2050Google Scholar

    [27]

    Debnath S, Linke N M, Wang S T, Figgatt C, Landsman K A, Duan L M, Monroe C 2018 Phys. Rev. Lett. 120 073001Google Scholar

    [28]

    Li S S 2018 Int. J. Theor. Phys. 57 2359Google Scholar

    [29]

    Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [30]

    Longhi S 2017 J. Phys. A: Math. Theor. 50 505201Google Scholar

    [31]

    Park K W, Kim J, Jeong K 2016 Opt. Commun. 368 190Google Scholar

    [32]

    Khantoul B, Bounames A, Maamache M 2017 Eur. Phys. J. Plus 132 258Google Scholar

    [33]

    Baradaran M, Panahi H 2017 Chin. Phys. B 26 060301Google Scholar

    [34]

    Maamache M, Lamri S, Cherbal O 2017 Ann. Phys. 378 150Google Scholar

    [35]

    Sergi A, Giaquinta P 2016 Entropy 18 451Google Scholar

    [36]

    Miao Y G, Xu Z M 2016 Phys. Lett. A 380 1805Google Scholar

    [37]

    Ferry D K, Akis R, Burke A M, Knezevic I, Brunner R, Bird J P, Meisels R, Kuchar F, Bird J P 2013 Fortschr. Phys. 61 291Google Scholar

    [38]

    Sergi A, Zloshchastiev K G 2016 J. Stat. Mech: Theory Exp. 2016 033102Google Scholar

    [39]

    Chen J H, Fan H Y 2012 Front. Phys. 7 632Google Scholar

    [40]

    Greenberg Y S, Shtygashev A A 2015 Phys. Rev. A 92 063835Google Scholar

    [41]

    Zloshchastiev K G 2015 Eur. Phys. J. D 69 253Google Scholar

    [42]

    Bagarello F, Lattuca M, Passante R, Rizzuto L, Spagnolo S 2015 Phys. Rev. A 91 042134Google Scholar

    [43]

    Giusteri G G, Mattiotti F, Celardo G L 2015 Phys. Rev. B 91 094301Google Scholar

    [44]

    Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819Google Scholar

    [45]

    Li J, Yu R, Wu Y 2015 Phys. Rev. A 92 053837Google Scholar

    [46]

    Xing Y, Qi L, Cao J, Wang D Y, Bai C H, Wang H F, Zhu A D, Zhang S 2017 Phys. Rev. A 96 043810Google Scholar

    [47]

    Peng B, Ozdemir S K, Rotter S, Yilmaz H, Liertzer M, Monifi F, Bender C M, Nori F, Yang L 2014 Science 346 328Google Scholar

    [48]

    Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photonics 8 524Google Scholar

    [49]

    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975Google Scholar

    [50]

    Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394Google Scholar

    [51]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [52]

    Fan L R, Fong K Y, Poot M, Tang H X 2015 Nat. Commun. 6 5850

    [53]

    Xiong C, Fan L R, Sun X K, Tang H X 2013 Appl. Phys. Lett 102 021110

    [54]

    Winger M, Blasius T D, Alegre T P M, Safavi Naeini A H, Meenehan S, Cohen J, Stobbe S, Painter O 2011 Opt. Express 19 24905Google Scholar

    [55]

    Zhang J, Peng B, Ozdemir S K, Liu Y X, Jing H, Lu X Y, Liu Y L, Yang L, Nori F 2015 Phys. Rev. B 92 115407

    [56]

    Bahl G, Tomes M, Marquardt F, Carmon T 2012 Nat. Phys. 8 203Google Scholar

    [57]

    Dong C H, Shen Z, Zou C L, Zhang Y L, Fu W, Guo G C 2015 Nat. Commun. 6 6193

    [58]

    Kepesidis K V, Milburn T J, Huber J, Makris K G, Rotter S, Rabl P 2016 New J. Phys. 18 095003

    [59]

    Xu X W, Liu Y X, Sun C P, Li Y 2015 Phys. Rev. A 92 013852

    [60]

    刘玉龙2017 博士学位论文 (北京: 清华大学)

    Liu Y L 2017 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [61]

    Didier N, Pugnetti S, Blanter Y M, Fazio R 2011 Phys. Rev. B 84 054503Google Scholar

  • [1] Wu Bo, Lin Yi, Wu Feng-Chuan, Chen Xiao-Zhang, An Qiang, Liu Yi, Fu Yun-Qi. Quantum microwave electric field measurement technology based on enhancement electric filed resonator. Acta Physica Sinica, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [2] Wu Yu-Kai, Duan Lu-Ming. Research progress of ion trap quantum computing. Acta Physica Sinica, 2023, 72(23): 230302. doi: 10.7498/aps.72.20231128
    [3] Xiong Fan, Chen Yong-Cong, Ao Ping. Qubit dynamics driven by dipole field in thermal noise environment. Acta Physica Sinica, 2023, 72(17): 170302. doi: 10.7498/aps.72.20230625
    [4] Xu Da, Wang Yi-Pu, Li Tie-Fu, You Jian-Qiang. Coherent coupling in a driven qubit-magnon hybrid quantum system. Acta Physica Sinica, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [5] Gao Fei, Feng Qi, Wang Ting, Zhang Jian-Jun. Controllable growth of GeSi nanowires on trench patterned Si(001) substrate. Acta Physica Sinica, 2020, 69(2): 028102. doi: 10.7498/aps.69.20191407
    [6] , Han Chao. Influence of dispersion and impurity on double-parameter asymmetric Gaussian quantum dot qubit. Acta Physica Sinica, 2019, 68(24): 247803. doi: 10.7498/aps.68.20190960
    [7] Liu Chao, Wu Yun-Wen. Quantum phase gate on a single superconducting Λ-type three-level and two superconducting resonators. Acta Physica Sinica, 2018, 67(17): 170302. doi: 10.7498/aps.67.20180830
    [8] Zhao Hu, Li Tie-Fu, Liu Qi-Chun, Zhang Ying-Shan, Liu Jian-She, Chen Wei. Decoherence characterization of three-dimensional transmon. Acta Physica Sinica, 2014, 63(22): 220305. doi: 10.7498/aps.63.220305
    [9] Xia Jian-Ping, Ren Xue-Zao, Cong Hong-Lu, Wang Xu-Wen, He Shu. Quantum evolution of entanglement property in two-qubit and oscillator coupling system. Acta Physica Sinica, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [10] Zhao Cui-Lan, Cong Yin-Chuan. The phonon effect of polaron and qubit in spherical shell quantum dot. Acta Physica Sinica, 2012, 61(18): 186301. doi: 10.7498/aps.61.186301
    [11] Gao Ji, Yang Tao, Ma Ping, Dai Yuan-Dong. Characteristics of dielectric resonators for high-transition-temperature radio frequency superconducting quantum interference devices. Acta Physica Sinica, 2010, 59(7): 5044-5048. doi: 10.7498/aps.59.5044
    [12] Jiang Fu-Shi, Zhao Cui-Lan. The phonon effect of qubit in quantum ring. Acta Physica Sinica, 2009, 58(10): 6786-6790. doi: 10.7498/aps.58.6786
    [13] Chen Ying-Jie, Xiao Jing-Lin. The temperature effect of the parabolic linear bound potential quantum dot qubit. Acta Physica Sinica, 2008, 57(11): 6758-6762. doi: 10.7498/aps.57.6758
    [14] Yin Ji-Wen, Xiao Jing-Lin, Yu Yi-Fu, Wang Zi-Wu. The effect of Coulomb potential to the decoherence of the parabolic quantum dot qubit. Acta Physica Sinica, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [15] Liu Yun-Fei, Xiao Jing-Lin. Effects of LA phonon on pure dephasing for exciton qubit. Acta Physica Sinica, 2008, 57(6): 3324-3327. doi: 10.7498/aps.57.3324
    [16] Gao Kuan-Yun, Zhao Cui-Lan. Properties of quantum bit in quantum ring. Acta Physica Sinica, 2008, 57(7): 4446-4449. doi: 10.7498/aps.57.4446
    [17] Dong Qing-Rui. Two-electron InAs quantum-dot-molecular qubit modulated by the orientation of magnetic fields. Acta Physica Sinica, 2007, 56(9): 5436-5440. doi: 10.7498/aps.56.5436
    [18] Li Yan-Ling, Feng Jian, Meng Xiang-Guo, Liang Bao-Long. Universal quantum teleflipping and telecloning of qubit. Acta Physica Sinica, 2007, 56(10): 5591-5596. doi: 10.7498/aps.56.5591
    [19] Wang Zi-Wu, Xiao Jing-Lin. Parabolic linear bound potential quantum dot qubit and its optical phonon effect. Acta Physica Sinica, 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
    [20] Hu Xue-Ning, Li Xin-Qi. Quantum measurement of single electron state by a quantum point contact. Acta Physica Sinica, 2006, 55(7): 3259-3264. doi: 10.7498/aps.55.3259
Metrics
  • Abstract views:  6412
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  25 December 2018
  • Accepted Date:  27 February 2019
  • Available Online:  01 June 2019
  • Published Online:  05 June 2019

/

返回文章
返回