Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface-enhanced Raman scattering effect of composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate film

Wang Xiang-Xian Bai Xue-Lin Pang Zhi-Yuan Yang Hua Qi Yun-Ping Wen Xiao-Lei

Citation:

Surface-enhanced Raman scattering effect of composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate film

Wang Xiang-Xian, Bai Xue-Lin, Pang Zhi-Yuan, Yang Hua, Qi Yun-Ping, Wen Xiao-Lei
PDF
HTML
Get Citation
  • The composite structure of metal nanoparticle and metal film can be used as a surface-enhanced Raman scattering (SERS) substrate to significantly enhance the Raman signal of adsorbed molecules due to the strong coupling between local surface plasmons and propagating surface plasmons. An SERS substrate of the composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate (PMMA) film is proposed. The optimum thickness of PMMA is 15 nm obtained by numerical simulation through using finite element method. The composite structure of PMMA spacer with a thickness of 14 nm is prepared experimentally. Using R6G as the Raman probe molecules and He-Ne laser with a wavelength of 633 nm as an excitation source, the SERS effect of the composite structure and single gold nano-cubes are studied. It is found that the composite structure can make the probe molecules produce a stronger Raman signal than the single structure. Furthermore, the SERS spectra of R6G molecules on the composite structure under the condition of aqueous solution of gold nano-cubes with different concentrations are studied. The results show that when the concentration of gold nano-cubes’ aqueous solution is 5.625 ${\text{μ}}{\rm g/mL}$, the SERS signal of the R6G molecules on the composite structure is strongest. The lowest concentration of R6G molecules which can be detected is about 10–11 mol/L.
      Corresponding author: Wang Xiang-Xian, wangxx869@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505074) and the HongLiu First-class Disciplines Development Program of Lanzhou University of Technology, China.
    [1]

    Liang C P, Niu G, Chen X F, Zhou Z G, Yi Z, Ye X, Duan T, Yi Y, Xiao S Y 2019 Opt. Commun. 436 57Google Scholar

    [2]

    Cen C L, Lin H, Huang J, Liang C P, Chen X F, Tang Y J, Yi Z, Ye X, Liu J W, Yi Y G, Xiao S Y 2018 Sensors 18 4489Google Scholar

    [3]

    Liu C, Su W Q, Liu Q, Lu X L, Wang F M, Sun T, Paul K C 2018 Opt. Express 26 9039Google Scholar

    [4]

    Liu Z, Yu M, Huang S, Liu X, Wang Y, Liu M, Pan P, Liu G 2015 J. Mater. Chem. C 3 4222Google Scholar

    [5]

    Wang X X, Wu X X, Chen Y Z, Bai X L, Pang Z Y, Yang H, Qi Y P, Wen X L 2018 AIP Adv. 8 105029Google Scholar

    [6]

    Yan Y X, Hua Y, Zhao X X, Li R S, Wang X X 2018 Mater. Res. Bull. 105 286Google Scholar

    [7]

    Zheng C X, Yang H 2018 J. Mater. Sci.: Mater. Electron. 29 9291Google Scholar

    [8]

    Zhao X X, Hua Y, Li S H, Cui Z M, Zhang C R 2018 Mater. Res. Bull. 107 180Google Scholar

    [9]

    Di L J, Yang H, Xian T, Chen X J 2018 Micromachines 9 613Google Scholar

    [10]

    Cen C L, Chen J J, Liang C P, Huang J, Chen X F, Tang Y J, Yi Z, Xu X B, Yi Y G, Xiao S Y 2018 Physica E 103 93Google Scholar

    [11]

    Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G 2015 ACS Appl. Mater. Inter. 7 4962Google Scholar

    [12]

    Yang L, Wang J C, Yang L Z, Hu Z D, Wu X J, Zheng G G 2018 Sci. Rep. 8 2560Google Scholar

    [13]

    Wang J C, Song C, Hang J, Hu Z D, Zhang F 2017 Opt. Express 25 23880Google Scholar

    [14]

    Zhang X W, Qi Y P, Zhou P Y, Gong H H, Hu B B, Yan C M 2018 Photon. Sens. 8 367Google Scholar

    [15]

    Chen J, Zhang T, Tang C J, Mao P, Liu Y J, Yu Y, Liu Z Q 2016 IEEE Photon. Tech. Lett. 28 1529Google Scholar

    [16]

    Chen J, Tang C J, Mao P, Peng C, Gao D P, Yu Y, Wang Q G, Zhang L B 2016 IEEE Photon. J. 8 4800107Google Scholar

    [17]

    Yang Z J, Zhao Q, He J 2017 Opt. Express 25 15927Google Scholar

    [18]

    Wang X X, Pang Z Y , Tong H , Wu X X, Bai X L, Yang H, Wen X L, Qi Y P 2019 Results Phys. 12 732Google Scholar

    [19]

    Pang Z Y, Tong H, Wu X X, Zhu J K, Wang X X, Yang H, Qi Y P 2018 Opt. Quant. Electron 50 335Google Scholar

    [20]

    Wang X X, Zhang D G, Chen Y K, Zhu L F, Yu W H, Wang P, Yao P J, Ming H, Wu W X, Zhang Q J 2013 Appl. Phys. Lett. 102 031103Google Scholar

    [21]

    Du H M, Zhang L P, Li D A 2018 Plasma Sci. Technol. 20 115001Google Scholar

    [22]

    Li D A, Zhang L P, Du H M 2018 Plasma Sci. Technol.Google Scholar

    [23]

    Shao H Y, Chen C, Wang J C, Pan L, Sang T 2017 J. Phys. D 50 384001Google Scholar

    [24]

    Liu G Q, Yu M D, Liu Z Q, Liu X S, Huang S, Pan P P, Wang Y, Liu M L, Gu G 2015 Nanotechnology 26 185702Google Scholar

    [25]

    Yu M D, Huang Z P, Liu Z Q, Chen J, Liu Y, Tang L, Liu G Q 2018 Sensor. Actuat. B: Chem. 262 845Google Scholar

    [26]

    李志远, 李家方 2011 科学通报 56 2631Google Scholar

    Li Z Y, Li J F 2011 Chin. Sci. Bull. 56 2631Google Scholar

    [27]

    Yi M F, Zhang D G, Wang P, Jiao X J, Blair S, Wen X L, Fu Q, Lu Y H, Ming H 2011 Plasmonics 6 515Google Scholar

    [28]

    Gonçalves R M 2014 J. Phys. D: Appl. Phys. 47 213001Google Scholar

    [29]

    Yan Z D, Du W, Tu L L, Gu P, Huang Z, Zhan P, Liuc F X, Wang Z L 2015 J. Raman Spectrosc. 46 795Google Scholar

    [30]

    Su X D, Ma X B, Wang J, Tu Z Z, Han Y J, Teng Z G 2018 J. Mol. Struct. 1171 202Google Scholar

    [31]

    Li R F, Shi G C, Wang Y H, Wang M L, Zhu Y Y, Sun X, Xu H J, Chang C X 2018 Optik 172 49Google Scholar

    [32]

    Kume T, Hayashiba S, Yamamotobo K 1996 Jpn. J. Appl. Phys. 35 171Google Scholar

    [33]

    Leveque G, Martin O J F 2006 Opt. Lett. 31 2750Google Scholar

    [34]

    Zhou L, Li M Y, Tang L H, He J J 2016 J. Phys.: Conference Series 680 012003Google Scholar

    [35]

    祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 物理学报 67 197301Google Scholar

    Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X X 2018 Acta Phys. Sin. 67 197301Google Scholar

    [36]

    马婧, 刘冬冬, 王继成, 冯延 2018 物理学报 67 094102Google Scholar

    Ma J, Liu D D, Wang J C, Feng Y 2018 Acta Phys. Sin. 67 094102Google Scholar

    [37]

    Wang X X, Tong H, Pang Z Y, Zhu J K, Wu X X, Yang H, Qi Y P 2019 Opt. Quant. Electron. 51 38Google Scholar

    [38]

    程自强, 石海泉, 余萍, 刘志敏 2018 物理学报 67 197302Google Scholar

    Cheng Z Q, Shi H Q, Yu P, Liu Z M 2018 Acta Phys. Sin. 67 197302Google Scholar

  • 图 1  (a)金纳米立方体的SEM图; (b)金纳米立方体的吸收谱

    Figure 1.  (a) SEM image of gold nano-cube; (b) absorption spectrum of gold nano-cube.

    图 2  10−4 mol/L的R6G、不同浓度金纳米立方体混合水溶液条件下玻璃基片上的SERS光谱

    Figure 2.  SERS spectra of R6G molecules on the glass substrate in the conditions of the mixed aqueous solution of gold nano-cubes with different concentrations and R6G with the concentration of 10−4 mol/L.

    图 3  (a)复合结构中最大电场增强因子与PMMA厚度的关系; (b) 15 nm PMMA厚度下复合结构中的电场分布

    Figure 3.  (a) Relationship between maximum electric field enhancement factor and the thickness of PMMA in composite structure; (b) electric field distribution of composite structure with a 15-nm-thick PMMA spacer.

    图 4  10−4 mol/L的R6G、不同浓度金纳米立方体混合水溶液条件下复合结构中的SERS光谱

    Figure 4.  SERS spectra of R6G molecules on the composite structure in the conditions of the mixed aqueous solution of gold nano-cubes with different concentrations and R6G with the concentration of 10−4 mol/L.

    图 5  10−4 mol/L的R6G, 5.625 ${\text {\rm μg/mL}}$的金纳米立方体混合水溶液条件下玻璃基片和复合结构的SERS光谱

    Figure 5.  SERS spectra of R6G molecules on the glass substrate and composite structure in the condition of the mixed aqueous solution of gold nano-cubes with the concentration of 5.625 ${\text {\rm μg/mL}}$ and R6G with the concentration of 10−4 mol/L.

    图 6  5.625 ${\text {\rm μg/mL}}$的金纳米立方体混合水溶液条件下, 复合结构的SERS光谱 (a)不同R6G浓度; (b) 10−11 mol/L的R6G浓度(1 M = 1 mol/L)

    Figure 6.  SERS spectra of R6G molecules on the composite structure in the conditions of the mixed aqueous solution of gold nano-cubes with the concentration of 5.625 ${\text{\rm μg/mL}} \!\! :$(a) R6G with different concentrations of 10–6, 10−8, 10−10, 10–11 mol/L; (b) R6G with the concentration of 10−11 mol/L.

  • [1]

    Liang C P, Niu G, Chen X F, Zhou Z G, Yi Z, Ye X, Duan T, Yi Y, Xiao S Y 2019 Opt. Commun. 436 57Google Scholar

    [2]

    Cen C L, Lin H, Huang J, Liang C P, Chen X F, Tang Y J, Yi Z, Ye X, Liu J W, Yi Y G, Xiao S Y 2018 Sensors 18 4489Google Scholar

    [3]

    Liu C, Su W Q, Liu Q, Lu X L, Wang F M, Sun T, Paul K C 2018 Opt. Express 26 9039Google Scholar

    [4]

    Liu Z, Yu M, Huang S, Liu X, Wang Y, Liu M, Pan P, Liu G 2015 J. Mater. Chem. C 3 4222Google Scholar

    [5]

    Wang X X, Wu X X, Chen Y Z, Bai X L, Pang Z Y, Yang H, Qi Y P, Wen X L 2018 AIP Adv. 8 105029Google Scholar

    [6]

    Yan Y X, Hua Y, Zhao X X, Li R S, Wang X X 2018 Mater. Res. Bull. 105 286Google Scholar

    [7]

    Zheng C X, Yang H 2018 J. Mater. Sci.: Mater. Electron. 29 9291Google Scholar

    [8]

    Zhao X X, Hua Y, Li S H, Cui Z M, Zhang C R 2018 Mater. Res. Bull. 107 180Google Scholar

    [9]

    Di L J, Yang H, Xian T, Chen X J 2018 Micromachines 9 613Google Scholar

    [10]

    Cen C L, Chen J J, Liang C P, Huang J, Chen X F, Tang Y J, Yi Z, Xu X B, Yi Y G, Xiao S Y 2018 Physica E 103 93Google Scholar

    [11]

    Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G 2015 ACS Appl. Mater. Inter. 7 4962Google Scholar

    [12]

    Yang L, Wang J C, Yang L Z, Hu Z D, Wu X J, Zheng G G 2018 Sci. Rep. 8 2560Google Scholar

    [13]

    Wang J C, Song C, Hang J, Hu Z D, Zhang F 2017 Opt. Express 25 23880Google Scholar

    [14]

    Zhang X W, Qi Y P, Zhou P Y, Gong H H, Hu B B, Yan C M 2018 Photon. Sens. 8 367Google Scholar

    [15]

    Chen J, Zhang T, Tang C J, Mao P, Liu Y J, Yu Y, Liu Z Q 2016 IEEE Photon. Tech. Lett. 28 1529Google Scholar

    [16]

    Chen J, Tang C J, Mao P, Peng C, Gao D P, Yu Y, Wang Q G, Zhang L B 2016 IEEE Photon. J. 8 4800107Google Scholar

    [17]

    Yang Z J, Zhao Q, He J 2017 Opt. Express 25 15927Google Scholar

    [18]

    Wang X X, Pang Z Y , Tong H , Wu X X, Bai X L, Yang H, Wen X L, Qi Y P 2019 Results Phys. 12 732Google Scholar

    [19]

    Pang Z Y, Tong H, Wu X X, Zhu J K, Wang X X, Yang H, Qi Y P 2018 Opt. Quant. Electron 50 335Google Scholar

    [20]

    Wang X X, Zhang D G, Chen Y K, Zhu L F, Yu W H, Wang P, Yao P J, Ming H, Wu W X, Zhang Q J 2013 Appl. Phys. Lett. 102 031103Google Scholar

    [21]

    Du H M, Zhang L P, Li D A 2018 Plasma Sci. Technol. 20 115001Google Scholar

    [22]

    Li D A, Zhang L P, Du H M 2018 Plasma Sci. Technol.Google Scholar

    [23]

    Shao H Y, Chen C, Wang J C, Pan L, Sang T 2017 J. Phys. D 50 384001Google Scholar

    [24]

    Liu G Q, Yu M D, Liu Z Q, Liu X S, Huang S, Pan P P, Wang Y, Liu M L, Gu G 2015 Nanotechnology 26 185702Google Scholar

    [25]

    Yu M D, Huang Z P, Liu Z Q, Chen J, Liu Y, Tang L, Liu G Q 2018 Sensor. Actuat. B: Chem. 262 845Google Scholar

    [26]

    李志远, 李家方 2011 科学通报 56 2631Google Scholar

    Li Z Y, Li J F 2011 Chin. Sci. Bull. 56 2631Google Scholar

    [27]

    Yi M F, Zhang D G, Wang P, Jiao X J, Blair S, Wen X L, Fu Q, Lu Y H, Ming H 2011 Plasmonics 6 515Google Scholar

    [28]

    Gonçalves R M 2014 J. Phys. D: Appl. Phys. 47 213001Google Scholar

    [29]

    Yan Z D, Du W, Tu L L, Gu P, Huang Z, Zhan P, Liuc F X, Wang Z L 2015 J. Raman Spectrosc. 46 795Google Scholar

    [30]

    Su X D, Ma X B, Wang J, Tu Z Z, Han Y J, Teng Z G 2018 J. Mol. Struct. 1171 202Google Scholar

    [31]

    Li R F, Shi G C, Wang Y H, Wang M L, Zhu Y Y, Sun X, Xu H J, Chang C X 2018 Optik 172 49Google Scholar

    [32]

    Kume T, Hayashiba S, Yamamotobo K 1996 Jpn. J. Appl. Phys. 35 171Google Scholar

    [33]

    Leveque G, Martin O J F 2006 Opt. Lett. 31 2750Google Scholar

    [34]

    Zhou L, Li M Y, Tang L H, He J J 2016 J. Phys.: Conference Series 680 012003Google Scholar

    [35]

    祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 物理学报 67 197301Google Scholar

    Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X X 2018 Acta Phys. Sin. 67 197301Google Scholar

    [36]

    马婧, 刘冬冬, 王继成, 冯延 2018 物理学报 67 094102Google Scholar

    Ma J, Liu D D, Wang J C, Feng Y 2018 Acta Phys. Sin. 67 094102Google Scholar

    [37]

    Wang X X, Tong H, Pang Z Y, Zhu J K, Wu X X, Yang H, Qi Y P 2019 Opt. Quant. Electron. 51 38Google Scholar

    [38]

    程自强, 石海泉, 余萍, 刘志敏 2018 物理学报 67 197302Google Scholar

    Cheng Z Q, Shi H Q, Yu P, Liu Z M 2018 Acta Phys. Sin. 67 197302Google Scholar

Metrics
  • Abstract views:  7962
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2019
  • Accepted Date:  18 January 2019
  • Available Online:  01 February 2019
  • Published Online:  05 February 2019

/

返回文章
返回