Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer

Huang Wei Li Yue-Long Ren Hui-Zhi Wang Peng-Yang Wei Chang-Chun Hou Guo-Fu Zhang De-Kun Xu Sheng-Zhi Wang Guang-Cai Zhao Ying Yuan Ming-Jian Zhang Xiao-Dan

Citation:

Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer

Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan
PDF
HTML
Get Citation
  • Organometal halide perovskites featuring solution-processable characteristics, high photoluminescence quantum yield (PLQY), and color purity, are an emerging class of semiconductor with considerable potential applications in optoelectronic devices. Electron injection layer is an important component of perovskite light-emitting device, which determines the growth of perovskite film directly. In this paper, the perovskite light-emitting diodes (PeLEDs) based on n-type nanocrystalline silicon oxide (n-nc-SiOx:H) electron injection layer are designed and realized. This novel electron injecting material is prepared by the plasma enhanced chemical vapor deposition (PECVD), and its smooth surface and matched energy band result in superior perovskite crystallinity and low electron injection barrier from the electron injecting layer to the emissive layer, respectively. However, the external quantum efficiency (EQE) of PeLED is as low as 0.43%, which relates to defects and leakage current due to the incomplete surface coverage of perovskite film. The fast exciton emission decay (< 10 ns) stems from strong non-radiative energy transfer to the trap states, and represents a big challenge in fabricating high-efficiency PeLEDs. In order to obtain desirable perovskite film morphology, an excessive proportion of methylammonium bromide (MABr) is incorporated into the perovskite solution, and a volume of benzylamine (PMA) is added into the chlorobenzene antisolvent. The perovskite films suffer low PLQY and short PL lifetime if only MABr or PMA is introduced. When the molar ratio of MABr is higher than 60%, the luminescence quenching arising from Joule heating is depressed by employing PMA, contributing to a higher PLQY (> 30%) and a longer carrier lifetime. The synergistic effect of MABr and PMA increase the coverage and reduce the trap density of perovskite film, inhibit the luminescence quenching in the annealing process, and thus facilitating the perovskite film with higher quality. Finally, the n-i-p PeLED exhibits green-light emission with a maximum current efficiency of 7.93 cd·A-1 and a maximum EQE up to 2.13% is obtained. These facts provide a novel electron injecting material and a feasible process for implementing the PeLEDs. With further optimizing the perovskite layer and device configuration, the performance of n-i-p type PeLEDs will be improved significantly on the basis of this electron injection material.
      Corresponding author: Yuan Ming-Jian, yuanmj@nankai.edu.cn ; Zhang Xiao-Dan, xdzhang@nankai.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1500103), the National Natural Science Foundation of China (Grant No. 61674084), the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China (Grant No. B16027), Tianjin Science and Technology Project, China (Grant No. 18ZXJMTG00220), and the Fundamental Research Funds for the Central Universities, Nankai University, China (Grant Nos. 63191736, ZB19500204).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [3]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [4]

    Tan H, Jain A, Voznyy O, Lan X, DeArquer F P G, Fan J Z, Bermudez R Q, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z, Yang Z, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [5]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [6]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [7]

    Chondroudis K, Mitzi D B 1999 Chem. Mater. 11 3028Google Scholar

    [8]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [9]

    Song J, Li J, Xu L, Li J, Zhang F, Han B, Shan Q, Zeng H 2018 Adv. Mater. 30 1800764Google Scholar

    [10]

    Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar

    [11]

    Yang X, Zhang X, Deng J, Chu Z, Jiang Q, Meng J, Wang P, Zhang L, Yin Z, You J 2018 Nat. Commun. 9 570Google Scholar

    [12]

    Lu M, Zhang X, Bai X, Wu H, Shen X, Zhang Y, Zhang W, Zheng W, Song H, Yu W W, Rogach A L 2018 ACS Energy Lett. 3 1571Google Scholar

    [13]

    Chiba T, Hoshi K, Pu Y J, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J 2017 ACS Appl. Mater. Interfaces 9 18054Google Scholar

    [14]

    Lee J W, Choi Y J, Yang J M, Ham S, Jeon S K, Lee J Y, Song Y H, Ji E K, Yoon D H, Seo S, Shin H, Han G S, Jung H S, Kim D, Park N G 2017 ACS Nano 11 3311Google Scholar

    [15]

    Yu J C, Kim D B, Baek G, Lee B R, Jung E D, Lee S, Chu J H, Lee D K, Choi K J, Cho S, Song M H 2015 Adv. Mater. 27 3492Google Scholar

    [16]

    Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [17]

    Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Bredas J L, Marder S R, Kahn A, Kippelen B 2012 Science 336 327Google Scholar

    [18]

    Wang N, Cheng L, Si J, Jin Y, Wang J, Huang W 2016 Appl. Phys. Lett. 108 141102Google Scholar

    [19]

    Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C, Du G 2017 Nano Lett. 17 313

    [20]

    Zhang L, Yang X, Jiang Q, Wang P, Yin Z, Zhang X, Tan H, Yang Y M, Wei M, Sutherland B R, Sargent E H, You J 2017 Nat. Commun. 8 15640Google Scholar

    [21]

    Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photon. 12 681Google Scholar

    [22]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [23]

    Zou Y, Ban M, Yang Y, Bai S, Wu C, Han Y, Wu T, Tan Y, Huang Q, Gao X, Song T, Zhang Q, Sun B 2018 ACS Appl. Mater. Interfaces 10 24320Google Scholar

    [24]

    丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚 2015 物理学报 64 038802Google Scholar

    Ding X J, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802Google Scholar

    [25]

    Yang J, Siempelkamp B D, Mosconi E, de Angelis F, Kelly T 2015 Chem. Mater. 27 4229Google Scholar

    [26]

    Savenije T J, Huijser A, Vermeulen M J, Katoh R 2008 Chem. Phys. Lett. 461 93Google Scholar

    [27]

    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J 2016 Nat. Energy 2 16177

    [28]

    Simmons J G 1965 Phys. Rev. Lett. 15 967Google Scholar

    [29]

    Wu I W, Chen Y H, Wang P S, Wang C G, Hsu S H, Wu C I 2010 Appl. Phys. Lett. 96 013301Google Scholar

    [30]

    Ma D H, Zhang W J, Jiang Z Y, Ma Q, Ma X B, Fan Z Q, Song D Y, Zhang L 2017 Sol. Energy 144 808Google Scholar

    [31]

    Ren Q, Li S, Zhu S, Ren H, Yao X, Wei C, Yan B, Zhao Y, Zhao X 2018 Sol. Energy Mater. Sol. Cells 185 124Google Scholar

    [32]

    Stoumpos C C, Malliakas C D, Peters J A, Liu Z, Sebastian M, Im J, Chasapis T C, Wibowo A C, Chung D Y, Freeman A J, Wessels B W, Kanatzidis M G 2013 Cryst. Growth Des. 13 2722Google Scholar

    [33]

    Lee S, Park J H, Nam Y S, Lee B R, Zhao B, Nuzzo D D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar

    [34]

    Zhao L, Lee K M, Roh K, Khan S U Z, Rand B P 2019 Adv. Mater. 31 1805836

    [35]

    Shi H, Du M H 2014 Phys. Rev. B 90 174103Google Scholar

    [36]

    Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245Google Scholar

    [37]

    Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar

  • 图 1  能级结构与器件结构 (a) PeLEDs器件各层材料的能级结构图; (b) PeLEDs器件结构图

    Figure 1.  Energy-level diagram and device structure: (a) band alignment of each functional layer; (b) structure diagram of PeLEDs device.

    图 2  不同衬底对钙钛矿薄膜的影响 (a)不同衬底表面的原子力显微镜图; (b)不同衬底上生长的钙钛矿薄膜X射线衍射图; (c)不同衬底上生长的钙钛矿薄膜PL光谱图

    Figure 2.  Influence of different substrates on perovskite films: (a) Atomic force microscopy images of different substrate surfaces; (b) X-ray diffraction patterns of perovskite films on different substrates; (c) photoluminescence spectra of perovskite films on different substrates.

    图 3  钙钛矿成膜工艺 (a)三种钙钛矿薄膜制备工艺及对应的原子力显微镜图和实物图; (b)三种工艺下钙钛矿薄膜表面的扫描电子显微镜图

    Figure 3.  Synthesis of perovskite film: (a) Different fabrication processes of perovskite films and the corresponding atomic force microscopy images and photographs; (b) planar scanning electron microscopy images of the perovskite films based on different fabrication processes.

    图 4  钙钛矿薄膜的光学性能表征 (a)不同浓度的MABr下, 退火前后钙钛矿薄膜的PLQY变化; (b)钙钛矿薄膜的吸收度; (c)归一化的PL谱

    Figure 4.  Optical characterization of perovskite films: (a) PLQY of perovskite films before and after annealing at different concentrations of MABr; (b) absorbance spectra of perovskite films; (c) normalized PL spectra of perovskite films.

    图 5  钙钛矿薄膜在n-nc-SiOx:H基底下的TRPL图 (a)不加PMA时, 不同MABr浓度下钙钛矿TRPL图; (b)加入PMA时, 不同MABr浓度下钙钛矿TRPL图

    Figure 5.  TRPL spectra of perovskite films on n-nc-SiOx:H: (a) TRPL spectra of perovskite films at different MABr concentrations without PMA additive; (b) TRPL spectra of perovskite films at different MABr concentrations with PMA additive.

    图 6  PeLEDs的电致发光表现 (a)器件的电流密度、光强随电压的变化; (b)器件的EQE随电流密度的变化; (c)器件的EQE随电压的变化; (d)器件发光对应的CIE坐标

    Figure 6.  Electroluminescence of PeLEDs: (a) Current density and luminance of the device as a function of voltage; (b) EQE of the device as a function of current density; (c) EQE of the device as a function of voltage; (d) the corresponding CIE coordinate.

    表 1  基于两种不同电子注入层的PeLEDs器件性能的比较

    Table 1.  Performance of PeLEDs based on different electron injection layers.

    电子注入层Lmax/cd·m–2CE/cd·A–1EQE/%
    n-nc-Si:H6500.40.1
    n-nc-SiOx:H21001.370.43
    DownLoad: CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [3]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [4]

    Tan H, Jain A, Voznyy O, Lan X, DeArquer F P G, Fan J Z, Bermudez R Q, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z, Yang Z, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [5]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [6]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [7]

    Chondroudis K, Mitzi D B 1999 Chem. Mater. 11 3028Google Scholar

    [8]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [9]

    Song J, Li J, Xu L, Li J, Zhang F, Han B, Shan Q, Zeng H 2018 Adv. Mater. 30 1800764Google Scholar

    [10]

    Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar

    [11]

    Yang X, Zhang X, Deng J, Chu Z, Jiang Q, Meng J, Wang P, Zhang L, Yin Z, You J 2018 Nat. Commun. 9 570Google Scholar

    [12]

    Lu M, Zhang X, Bai X, Wu H, Shen X, Zhang Y, Zhang W, Zheng W, Song H, Yu W W, Rogach A L 2018 ACS Energy Lett. 3 1571Google Scholar

    [13]

    Chiba T, Hoshi K, Pu Y J, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J 2017 ACS Appl. Mater. Interfaces 9 18054Google Scholar

    [14]

    Lee J W, Choi Y J, Yang J M, Ham S, Jeon S K, Lee J Y, Song Y H, Ji E K, Yoon D H, Seo S, Shin H, Han G S, Jung H S, Kim D, Park N G 2017 ACS Nano 11 3311Google Scholar

    [15]

    Yu J C, Kim D B, Baek G, Lee B R, Jung E D, Lee S, Chu J H, Lee D K, Choi K J, Cho S, Song M H 2015 Adv. Mater. 27 3492Google Scholar

    [16]

    Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [17]

    Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Bredas J L, Marder S R, Kahn A, Kippelen B 2012 Science 336 327Google Scholar

    [18]

    Wang N, Cheng L, Si J, Jin Y, Wang J, Huang W 2016 Appl. Phys. Lett. 108 141102Google Scholar

    [19]

    Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C, Du G 2017 Nano Lett. 17 313

    [20]

    Zhang L, Yang X, Jiang Q, Wang P, Yin Z, Zhang X, Tan H, Yang Y M, Wei M, Sutherland B R, Sargent E H, You J 2017 Nat. Commun. 8 15640Google Scholar

    [21]

    Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photon. 12 681Google Scholar

    [22]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [23]

    Zou Y, Ban M, Yang Y, Bai S, Wu C, Han Y, Wu T, Tan Y, Huang Q, Gao X, Song T, Zhang Q, Sun B 2018 ACS Appl. Mater. Interfaces 10 24320Google Scholar

    [24]

    丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚 2015 物理学报 64 038802Google Scholar

    Ding X J, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802Google Scholar

    [25]

    Yang J, Siempelkamp B D, Mosconi E, de Angelis F, Kelly T 2015 Chem. Mater. 27 4229Google Scholar

    [26]

    Savenije T J, Huijser A, Vermeulen M J, Katoh R 2008 Chem. Phys. Lett. 461 93Google Scholar

    [27]

    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J 2016 Nat. Energy 2 16177

    [28]

    Simmons J G 1965 Phys. Rev. Lett. 15 967Google Scholar

    [29]

    Wu I W, Chen Y H, Wang P S, Wang C G, Hsu S H, Wu C I 2010 Appl. Phys. Lett. 96 013301Google Scholar

    [30]

    Ma D H, Zhang W J, Jiang Z Y, Ma Q, Ma X B, Fan Z Q, Song D Y, Zhang L 2017 Sol. Energy 144 808Google Scholar

    [31]

    Ren Q, Li S, Zhu S, Ren H, Yao X, Wei C, Yan B, Zhao Y, Zhao X 2018 Sol. Energy Mater. Sol. Cells 185 124Google Scholar

    [32]

    Stoumpos C C, Malliakas C D, Peters J A, Liu Z, Sebastian M, Im J, Chasapis T C, Wibowo A C, Chung D Y, Freeman A J, Wessels B W, Kanatzidis M G 2013 Cryst. Growth Des. 13 2722Google Scholar

    [33]

    Lee S, Park J H, Nam Y S, Lee B R, Zhao B, Nuzzo D D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar

    [34]

    Zhao L, Lee K M, Roh K, Khan S U Z, Rand B P 2019 Adv. Mater. 31 1805836

    [35]

    Shi H, Du M H 2014 Phys. Rev. B 90 174103Google Scholar

    [36]

    Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245Google Scholar

    [37]

    Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar

  • [1] Zhao Jian-Cheng, Wu Chao-Xing, Guo Tai-Liang. Carrier transport model of non-carrier-injection light-emitting diode. Acta Physica Sinica, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [2] Yu Yi, An Zhi-Dong, Cai Xiao-Yi, Guo Ming-Lei, Jing Cheng-Bin, Li Yan-Qing. Recent progress of tin-based perovskites and their applications in light-emitting diodes. Acta Physica Sinica, 2021, 70(4): 048503. doi: 10.7498/aps.70.20201284
    [3] Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen. Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Physica Sinica, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [4] Wu Jia-Long, Dou Yong-Jiang, Zhang Jian-Feng, Wang Hao-Ran, Yang Xu-Yong. Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer. Acta Physica Sinica, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [5] Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin. Research progress of stability of luminous lead halide perovskite nanocrystals. Acta Physica Sinica, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [6] Wu Hai-Yan, Tang Jian-Xin, Li Yan-Qing. Efficient and stable blue perovskite light emitting diodes based on defect passivation. Acta Physica Sinica, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [7] Chen Jia-Mei, Su Hang, Li Wan, Zhang Li-Lai, Suo Xin-Lei, Qin Jing, Zhu Kun, Li Guo-Long. Research progress of enhancing perovskite light emitting diodes with light extraction. Acta Physica Sinica, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [8] Li Zhen-Chao, Chen Zi-Ming, Zou Guang-Rui-Xing, Yip Hin-Lap, Cao Yong. Applications of organic additives in metal halide perovskite light-emitting diodes. Acta Physica Sinica, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [9] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [10] Shi Qiang, Li Lu-Ping, Zhang Yong-Hui, Zhang Zi-Hui, Bi Wen-Gang. Identifying the influence of GaN/InxGa1-xN type last quantum barrier on internal quantum efficiency for III-nitride based light-emitting diode. Acta Physica Sinica, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [11] Feng Bo, Deng Biao, Liu Le-Gong, Li Zeng-Cheng, Feng Mei-Xin, Zhao Han-Min, Sun Qian. Effect of plasma surface treatment on embedded n-contact for GaN-based blue light-emitting diodes grown on Si substrate. Acta Physica Sinica, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [12] Jia Bo-Lun, Deng Ling-Ling, Chen Ruo-Xi, Zhang Ya-Nan, Fang Xu-Min. Numerical research of emission properties of localized surface plasmon resonance enhanced light-emitting diodes based on Ag@SiO2 nanoparticles. Acta Physica Sinica, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [13] Zhang Chao-Yu, Xiong Chuan-Bing, Tang Ying-Wen, Huang Bin-Bin, Huang Ji-Feng, Wang Guang-Xu, Liu Jun-Lin, Jiang Feng-Yi. Changes of micro zone luminescent properties and stress of GaN-based light emitting diode film grown on patterned silicon substrate, induced by the removal of the substrate and AlN buffer layer. Acta Physica Sinica, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [14] Chen Zhan-Xu, Wan Wei, He Ying-Ji, Chen Geng-Yan, Chen Yong-Zhu. Light-extraction enhancement of GaN-based LEDs by closely-packed nanospheres monolayer. Acta Physica Sinica, 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [15] Mao Qing-Hua, Liu Jun-Lin, Quan Zhi-Jue, Wu Xiao-Ming, Zhang Meng, Jiang Feng-Yi. Influences of p-type layer structure and doping profile on the temperature dependence of the foward voltage characteristic of GaInN light-emitting diode. Acta Physica Sinica, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [16] Chen Huan-Ting, Lü Yi-Jun, Gao Yu-Lin, Chen Zhong, Zhuang Rong-Rong, Zhou Xiao-Fang, Zhou Hai-Guang. The physical characteristic study on luminance uniformity and temperature for power GaN LEDs chip. Acta Physica Sinica, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [17] Li Shui-Qing, Wang Lai, Han Yan-Jun, Luo Yi, Deng He-Qing, Qiu Jian-Sheng, Zhang Jie. A new growth method of roughed p-GaN in GaN-based light emitting diodes. Acta Physica Sinica, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [18] Wang Guang-Xu, Tao Xi-Xia, Xiong Chuan-Bing, Liu Jun-Lin, Feng Fei-Fei, Zhang Meng, Jiang Feng-Yi. Effects of Ni-assisted annealing on p-type contact resistivity of GaN-based LED films grown on Si(111) substrates. Acta Physica Sinica, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [19] Xiong Chuan-Bing, Jiang Feng-Yi, Wang Li, Fang Wen-Qing, Mo Chun-Lan. The investigation on the interference phenomenon in electroluminescence spectrum of vertical structured InGaAlN multiple quantum well light-emitting diodes. Acta Physica Sinica, 2008, 57(12): 7860-7864. doi: 10.7498/aps.57.7860
    [20] Liu Nai-Xin, Wang Huai-Bing, Liu Jian-Ping, Niu Nan-Hui, Han Jun, Shen Guang-Di. Growth of p-GaN at low temperature and its properties as light emitting diodes. Acta Physica Sinica, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
Metrics
  • Abstract views:  8683
  • PDF Downloads:  109
  • Cited By: 0
Publishing process
  • Received Date:  26 February 2019
  • Accepted Date:  08 April 2019
  • Available Online:  06 June 2019
  • Published Online:  20 June 2019

/

返回文章
返回