Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effective quintessence from string landscape

Zhai Han-Yu Shen Jia-Yin Xue Xun

Citation:

Effective quintessence from string landscape

Zhai Han-Yu, Shen Jia-Yin, Xue Xun
PDF
HTML
Get Citation
  • Recently, Vafa et al. proposed two string swampland criteria, and studying the constraints imposed by the two string swampland criteria on cosmology, they found that the inflationary models are generally difficult to be compatible with these two criteria. Applying these two criteria to the accelerated expansion of the universe during the current period, it was found that the specific quintessence model can satisfy these constraints while satisfying the constraints imposed by the current observations. Applying the gravitational theory of large scale Lorentz violation to cosmology, the vacuum energy density is not the only cause of the accelerated expansion of the universe. The large scale Lorentz violation combined with the cosmological constant term results in the observed accelerated expansion of the late universe. The vacuum energy density is a bit like a naked cosmological constant. The equivalent energy density considering the large scale Lorentz violation effect is the effective cosmological constant that determines the evolution of the universe. In this way, we find that the negative cosmological constant in the string landscape can also accelerate the expansion of the universe, and compared with the $ {\varLambda _{{\rm{CDM}}}}$ model, it leads to a cosmological constant as an effective vacuum energy density. Effective vacuum energy density behaves as a monotonically decreasing quintessence potential energy for the string landscape, for most of the naked positive vacuum energy densities in the swampland, the evolution of effective cosmological constant with time will show a local minimum. Comparing the calculated results of the distance modulus withthe astronomical observations, we can obtain that a negative cosmological constant also accelerates the expansion of the universe. Thus, the vacuum energy density derived from the string landscape will give quintessence potential that satisfies the swampland criterion, while the evolution of vacuum energy density given by the swampland model of the metastable dS vacuum is not quintessence potential, so it cannot satisfy the second de Sitter criterion. Therefore, the effective potential leading to the accelerated expansion of the late universe can only come from the string landscape, which is naturally UV completion. Therefore, it gives that the accelerated expansion of the late universe is the feature of early quantum gravity. It is not necessary to use the metastable de Sitter vacuum to explain the accelerated expansion of the late universe. The difficulty of incompatibility between the swampland model and the accelerated expansion of the late universe caused by the swampland conjecture will be eliminated.
      Corresponding author: Xue Xun, xxue@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11435005, 11775080, 11865016).
    [1]

    Douglas M R 2003 J. High Energ. Phys. 2003 046

    [2]

    Douglas M R 2002 Unity from Duality: Gravity, Gauge Theory and Strings (Berlin: Springer-Verlag) pp455–475

    [3]

    Susskind L 2003 arXiv: hep-th/0302219[hep-th]

    [4]

    Vafa C 2005 arXiv: hep-th/0509212 [hep-th]

    [5]

    Ooguri H, Vafa C 2007 Nucl. Phys. B 766 21Google Scholar

    [6]

    Agrawal P, Obied G, Steinhardt P, Vafa C 2018 Phys. Lett. B 784 271Google Scholar

    [7]

    Obied G, Ooguri H, Spodyneiko L, Vafa C 2018 arXiv: 1806.08362[hep-th]

    [8]

    Brennan T D, Carta F, Vafa C 2017 arXiv: 1711.00864[hep-th]

    [9]

    Kachru S, Kallosh R, Linde A, Trivedi S P 2003 Phys. Rev. D 68 046005Google Scholar

    [10]

    Coleman S R, Glashow S L 1999 Phys. Rev. D 59 116008Google Scholar

    [11]

    Colladay D, Kostelecky V A 1998 Phys. Rev. D 58 116002Google Scholar

    [12]

    Shen J Y, Xue X 2018 arXiv: 1802.03502[gr-qc]

    [13]

    Wu Y W, Xue X, Yang L X, Yuan T 2016 Chin. Sci. Bull. 10 1360

    [14]

    Wu Y W, Xue X, Yang L X, Yuan T 2015 arXiv: 1510.00814v3[gr-qc]

    [15]

    魏文叶, 申佳音, 吴奕暐, 杨礼想, 薛迅, 阮自强 2017 物理学报 66 130301Google Scholar

    Wei W Y, Shen J Y, Wu Y W, Yang L X, Xue X, Yuan T C 2017 Acta. Phys. Sin. 66 130301Google Scholar

    [16]

    杨礼想, 吴奕暐, 魏文叶, 薛迅, 阮自强 2017 科学通报 62 944

    Yang L X, Wu Y W, Wei W Y, Xue X, Yuan T C 2017 Chin. Sci. Bull. 62 944

    [17]

    Wu Y W, Xue X 2016 J. East China Normal Univ. 3 76

    [18]

    Castelvecchi D, Witze A https://www.nature.com/news/einstein-s-gravitational-waves-found-at-last-1.19361 [2019-3-15]

    [19]

    Abbott B P 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [20]

    Svitil K, Allen K, Kupec I, Ricci F, Milde S https://phys.org/news/2016-02-gravitational-years-einstein.html [2019-4-23]

    [21]

    Deser S, Woodard R P 2019 arXiv: 1902.08075 [gr-qc]

    [22]

    Rajvanshi M P, Chakraborty T, Bagla J S 2018 arXiv: 1803.04267 [physics.pop-ph]

    [23]

    Cai R G, Khimphun S, Lee B H, Sun S, Tumurtushaa G, Zhang Y L 2018 arXiv: 1812.11105 [hep-th]

    [24]

    Dimopoulos K, Markkanen T 2018 arXiv: 1807.04359 [astro-ph.CO]

    [25]

    Glavan D, Prokopec T, Starobinsky A A 2018 Eur. Phys. J. C 78 371Google Scholar

    [26]

    Dinda B R 2019 arXiv: 1904.10418 [astro-ph.CO]

    [27]

    Dimakis N, Paliathanasis A, Terzis P A, Christodoulakis T 2019 arXiv: 1904.09713 [gr-qc]

    [28]

    Johnson J P, Shankaranarayanan S 2019 arXiv: 1904.07608 [astro-ph.CO]

    [29]

    Rani S, Jawad A, Bamba K, Malik I U 2019 arXiv: 1904.04633 [physics.gen-ph]

    [30]

    Li X L, Shafieloo A, Sahni V, Starobinsky A A 2019 arXiv: 1904.03790 [astro-ph.CO]

    [31]

    Zhang H C, Xu L X 2019 arXiv: 1904.03545 [gr-qc]

    [32]

    Nielsen J T, Guffanti A, Sarkar S 2016 Sci. Rep. 6 219

    [33]

    Lukierski J, Nowicki A 2003 Int. J. Mod. Phys. A 18 7Google Scholar

  • 图 1  亚稳态dS的标量势V

    Figure 1.  The scalar potential V for a metastable dS.

    图 2  不稳定dS的标量势V

    Figure 2.  The scalar potential V for an unstable dS.

    图 3  ${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$, ${w_0} = - 0.88$时哈勃常数随时间的演化 (a) ${\varLambda _0} = - {\rm{0}}.{\rm{2}}\varLambda $; (b) ${\varLambda _0} = 0$; (c) ${\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda $

    Figure 3.  The Hubble constant evolves with the time when ${w_0} = - 0.88$, ${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$: (a) ${\varLambda _0} = - {\rm{0}}.{\rm{2}}\varLambda $; (b) ${\varLambda _0} = 0$; (c) $ {\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda $.

    图 4  ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$, ${w_0} = - 0.88$时哈勃常数随时间的演化 (a) ${\varLambda _0} = - {\rm{0}}.{\rm{2}}\varLambda $; (b) ${\varLambda _0} = 0$; (c) ${\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda $

    Figure 4.  The Hubble constant evolves with the time when ${w_0} = - 0.88$, ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$: (a) ${\varLambda _0} = - {\rm{0}}.{\rm{2}}\varLambda $; (b) ${\varLambda _0} = 0$; (c) $ {\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda $.

    图 5  ${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$, ${w_0} = - 0.88$${\cal{K}}$随时间的演化 (a) ${\varLambda _0} = - {\rm{0}}.{\rm{2}}\varLambda $; (b) ${\varLambda _0} = 0$; (c) ${\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda $

    Figure 5.  ${\cal{K}}$ evolves with the time when ${w_0} = - 0.88$, ${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$: (a) ${\varLambda _0} = - {\rm{0}}.{\rm{2}}\varLambda $; (b) ${\varLambda _0} = 0$; (c) ${\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda $.

    图 6  ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$, ${w_0} = - 0.88$${\cal{K}}$随时间的演化 (a) ${\varLambda _0} = - {\rm{0}}.{\rm{2}}\varLambda $; (b) ${\varLambda _0} = 0$; (c) ${\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda $

    Figure 6.  ${\cal{K}}$ evolves with the time when ${w_0} = - 0.88$, ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$: (a) ${\varLambda _0} = - {\rm{0}}.{\rm{2}}\varLambda $; (b) ${\varLambda _0} = 0$; (c) ${\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda $.

    图 7  ${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$, ${w_0} = - 0.88$时光度距离随红移的演化 (a) ${\varLambda _0} = - {\rm{0}}.{\rm{2}}\varLambda $; (b) ${\varLambda _0} = 0$; (c) ${\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda $

    Figure 7.  The luminosity distance evolves with the redshift when ${w_0} = - 0.88$, ${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$: (a) ${\varLambda _0} = - {\rm{0}}.{\rm{2}}\varLambda $; (b) ${\varLambda _0} = 0$; (c) ${\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda $.

    图 8  ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$, ${w_0} = - 0.88$时光度距离随红移的演化 (a) ${\varLambda _0} = - {\rm{0}}.{\rm{2}}\varLambda $; (b) ${\varLambda _0} = 0$; (c) ${\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda $

    Figure 8.  the luminosity distance evolves with the redshift when ${w_0} = - 0.88$, ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$ (a) ${\varLambda _0} = - {\rm{0}}.{\rm{2}}\varLambda $; (b) ${\varLambda _0} = 0$; (c) ${\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda $.

    图 9  ${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$, ${w_0} = - 0.88$时距离模数测量值与理论期望值的对比 (a) ${\varLambda _0} = - {\rm{0}}.{\rm{2}}\varLambda $; (b) ${\varLambda _0} = 0$; (c) ${\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda $

    Figure 9.  Comparison of the measured distance moduluswith its expected value when ${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$, ${w_0} = - 0.88$: (a) ${\varLambda _0} = - {\rm{0}}.{\rm{2}}\varLambda $; (b) ${\varLambda _0} = 0$; (c) $ {\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda$

    图 10  ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$, ${w_0} = - \dfrac{8}{9}$时距离模数实验测量值与理论期望值的对比 (a) ${\varLambda _0} = - 0.2\varLambda $; (b) ${\varLambda _0} = 0$; (c) ${\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda $

    Figure 10.  Comparison of the measured distance moduluswith its expected value when ${\cal{K}}\left( {{t_0}} \right)\!=\!- {H_0}\left(\!{\sqrt {1\!-\!\dfrac{{\varLambda\!-\!{\varLambda _0}}}{{3{H_0}^2}}}\!+\!1}\!\right)$, ${w_0} = - \dfrac{8}{9}$: (a) ${\varLambda _0} = - 0.2\varLambda $; (b) ${\varLambda _0} = 0$; (c) $ {\varLambda _0} = {\rm{0}}.{\rm{2}}\varLambda$.

    图 11  ${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$${\varLambda _{{\rm{eff}}}}$从单调的quintessence类型到随时间的演化出现局域极小类型的转变 (a) CaseA1; (b) CaseB1; (c) CaseC1, ${w_0} = - 1$; (d) CaseC1, ${w_0} = - \dfrac{8}{9}$

    Figure 11.  ${\varLambda _{{\rm{eff}}}}$ shifts from a monotonically decreasing quintessence type to a local minimal type transition with time evolution when ${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$ (a) CaseA1; (b) CaseB1; (c) CaseC1, ${w_0} = - 1$; (d) CaseC1, ${w_0} = - \dfrac{8}{9}$.

    图 12  ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$${\varLambda _{{\rm{eff}}}}$从单调的quintessence类型到随时间的演化出现局域极小类型的转变 (a) CaseA2; (b) CaseB2; (c) CaseC2, ${w_0} = - 1$; (d) CaseC2, ${w_0} = - \dfrac{8}{9}$

    Figure 12.  ${\varLambda _{{\rm{eff}}}}$ shifts from a monotonically decreasing quintessence type to a local minimal type transition with time evolution when ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$ (a) CaseA2; (b) CaseB2; (c) CaseC2, ${w_0} = - 1$; (d) CaseC2, ${w_0} = - \dfrac{8}{9}$.

    表 1  Lorentz破缺宇宙学的几种模型

    Table 1.  Proposed models of Lorentz violation cosmology.

    ${\cal{K}}\left( {{t_0}} \right)$的值${\cal{K}}\left( t \right)$的方程
    CaseA1${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$ $H\left( t \right){\cal{K}}\left( t \right) + {\dot {\cal{K}}}\left( t \right) = \dfrac{1}{3}\left( {{\varLambda _0} - \varLambda } \right);$
    CaseA2${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$$H\left( t \right){\cal{K}}\left( t \right) + \dot {\cal{K}}\left( t \right) = \dfrac{1}{3}\left( {{\varLambda _0} - \varLambda } \right);$
    CaseB1${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$$\dot {\cal{K}} + 2H{\cal{K}} + \dfrac{1}{2}{{\cal{K}}^2} = \dfrac{1}{2}\left( {{\varLambda _0} - \varLambda } \right);$
    CaseB2${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$$\dot {\cal{K}} + 2H{\cal{K}} + \dfrac{1}{2}{{\cal{K}}^2} = \dfrac{1}{2}\left( {{\varLambda _0} - \varLambda } \right);$
    CaseC1${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$$\begin{array}{l} \left( {3{w_0} + 1} \right){{\cal{K}}^2} + \left( {6{w_0} + 4} \right)H{\cal{K}} + 2\dot {\cal{K}} = \left( {{w_0} + 1} \right){\varLambda _0}; \\ \end{array} $
    CaseC2${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$$\begin{array}{l} \left( {3{w_0} + 1} \right){{\cal{K}}^2} + \left( {6{w_0} + 4} \right)H{\cal{K}} + 2\dot {\cal{K}} = \left( {{w_0} + 1} \right){\varLambda _0}. \\ \end{array} $
    DownLoad: CSV

    表 2  在不同模型下有无${\varLambda _0}$的临界值

    Table 2.  Whether there are critical values of ${\varLambda _0}$ under different models

    ${\cal{K}}\left( {{t_0}} \right)$的值${\varLambda _0}$的临界值
    CaseA${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$$ - 0.05\varLambda $
    ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$$ - 0.187\varLambda $
    CaseB${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$$ - 0.066\varLambda $
    ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$$ - 0.2144\varLambda $
    CaseC (${w_0} = - 1$) ${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$$0.00001\varLambda $
    ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$$0.00001\varLambda $
    CaseC(${w_0} = - {8}/{9}$)${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$$0.119\varLambda $
    ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$$0.075\varLambda $
    CaseC(${w_0} = - {7}/{9}$)${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$
    ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$$0.152\varLambda $
    CaseC(${w_0} = - {2}/{3}$)${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$
    ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$$0.225\varLambda $
    CaseC(${w_0} = - {1}/{3}$)${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} - 1} \right)$
    ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \dfrac{{\varLambda - {\varLambda _0}}}{{3{H_0}^2}}} + 1} \right)$$0.397\varLambda $
    DownLoad: CSV
  • [1]

    Douglas M R 2003 J. High Energ. Phys. 2003 046

    [2]

    Douglas M R 2002 Unity from Duality: Gravity, Gauge Theory and Strings (Berlin: Springer-Verlag) pp455–475

    [3]

    Susskind L 2003 arXiv: hep-th/0302219[hep-th]

    [4]

    Vafa C 2005 arXiv: hep-th/0509212 [hep-th]

    [5]

    Ooguri H, Vafa C 2007 Nucl. Phys. B 766 21Google Scholar

    [6]

    Agrawal P, Obied G, Steinhardt P, Vafa C 2018 Phys. Lett. B 784 271Google Scholar

    [7]

    Obied G, Ooguri H, Spodyneiko L, Vafa C 2018 arXiv: 1806.08362[hep-th]

    [8]

    Brennan T D, Carta F, Vafa C 2017 arXiv: 1711.00864[hep-th]

    [9]

    Kachru S, Kallosh R, Linde A, Trivedi S P 2003 Phys. Rev. D 68 046005Google Scholar

    [10]

    Coleman S R, Glashow S L 1999 Phys. Rev. D 59 116008Google Scholar

    [11]

    Colladay D, Kostelecky V A 1998 Phys. Rev. D 58 116002Google Scholar

    [12]

    Shen J Y, Xue X 2018 arXiv: 1802.03502[gr-qc]

    [13]

    Wu Y W, Xue X, Yang L X, Yuan T 2016 Chin. Sci. Bull. 10 1360

    [14]

    Wu Y W, Xue X, Yang L X, Yuan T 2015 arXiv: 1510.00814v3[gr-qc]

    [15]

    魏文叶, 申佳音, 吴奕暐, 杨礼想, 薛迅, 阮自强 2017 物理学报 66 130301Google Scholar

    Wei W Y, Shen J Y, Wu Y W, Yang L X, Xue X, Yuan T C 2017 Acta. Phys. Sin. 66 130301Google Scholar

    [16]

    杨礼想, 吴奕暐, 魏文叶, 薛迅, 阮自强 2017 科学通报 62 944

    Yang L X, Wu Y W, Wei W Y, Xue X, Yuan T C 2017 Chin. Sci. Bull. 62 944

    [17]

    Wu Y W, Xue X 2016 J. East China Normal Univ. 3 76

    [18]

    Castelvecchi D, Witze A https://www.nature.com/news/einstein-s-gravitational-waves-found-at-last-1.19361 [2019-3-15]

    [19]

    Abbott B P 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [20]

    Svitil K, Allen K, Kupec I, Ricci F, Milde S https://phys.org/news/2016-02-gravitational-years-einstein.html [2019-4-23]

    [21]

    Deser S, Woodard R P 2019 arXiv: 1902.08075 [gr-qc]

    [22]

    Rajvanshi M P, Chakraborty T, Bagla J S 2018 arXiv: 1803.04267 [physics.pop-ph]

    [23]

    Cai R G, Khimphun S, Lee B H, Sun S, Tumurtushaa G, Zhang Y L 2018 arXiv: 1812.11105 [hep-th]

    [24]

    Dimopoulos K, Markkanen T 2018 arXiv: 1807.04359 [astro-ph.CO]

    [25]

    Glavan D, Prokopec T, Starobinsky A A 2018 Eur. Phys. J. C 78 371Google Scholar

    [26]

    Dinda B R 2019 arXiv: 1904.10418 [astro-ph.CO]

    [27]

    Dimakis N, Paliathanasis A, Terzis P A, Christodoulakis T 2019 arXiv: 1904.09713 [gr-qc]

    [28]

    Johnson J P, Shankaranarayanan S 2019 arXiv: 1904.07608 [astro-ph.CO]

    [29]

    Rani S, Jawad A, Bamba K, Malik I U 2019 arXiv: 1904.04633 [physics.gen-ph]

    [30]

    Li X L, Shafieloo A, Sahni V, Starobinsky A A 2019 arXiv: 1904.03790 [astro-ph.CO]

    [31]

    Zhang H C, Xu L X 2019 arXiv: 1904.03545 [gr-qc]

    [32]

    Nielsen J T, Guffanti A, Sarkar S 2016 Sci. Rep. 6 219

    [33]

    Lukierski J, Nowicki A 2003 Int. J. Mod. Phys. A 18 7Google Scholar

  • [1] Wang En-Quan, Chen Hao, Yang Yi, Long Zheng-Wen, Hassanabadi Hassan. Generalized Klein-Gordon oscillator in Lorentz symmetry violation framework. Acta Physica Sinica, 2022, 71(6): 060301. doi: 10.7498/aps.71.20211733
    [2] Pu Jin, Yang Shu-Zheng, Lin Kai. Lorentz-violating theory and tunneling radiation characteristics of Dirac particles in curved spacetime of Vaidya black hole. Acta Physica Sinica, 2019, 68(19): 190401. doi: 10.7498/aps.68.20190437
    [3] Dong Cheng-Wei. Periodic orbits of diffusionless Lorenz system. Acta Physica Sinica, 2018, 67(24): 240501. doi: 10.7498/aps.67.20181581
    [4] Dai Shang-Jun, Wu Si-Jin, Wang Xiao-Dong, Shi Yi-Shi. Lorentz force particle analyzer with an array probe based on speckle pattern interferometry. Acta Physica Sinica, 2017, 66(20): 208102. doi: 10.7498/aps.66.208102
    [5] Wei Wen-Ye, Shen Jia-Yin, Wu Yi-Wei, Yang Li-Xiang, Xue Xun, Yuan Tzu-Chiang. E(2) gauge theory model of effective gravitational theory at large scale. Acta Physica Sinica, 2017, 66(13): 130301. doi: 10.7498/aps.66.130301
    [6] Chen Yao-Hui, Dong Xiang-Rui, Chen Zhi-Hua, Zhang Hui, Li Bao-Ming, Fan Bao-Chun. Control of flow around hydrofoil using the Lorentz force. Acta Physica Sinica, 2014, 63(3): 034701. doi: 10.7498/aps.63.034701
    [7] Zhao Jian-Li, Wang Jing, Wang Hui. The study of finite-time stability active control method for Lorenz-Haken laser chaotic system. Acta Physica Sinica, 2012, 61(11): 110209. doi: 10.7498/aps.61.110209
    [8] Zhou Xian-Chun, Lin Wan-Tao, Lin Yi-Hua, Yao Jing-Sun, Mo Jia-Qi. A method of solving a class of disturbed Lorenz system. Acta Physica Sinica, 2011, 60(11): 110207. doi: 10.7498/aps.60.110207
    [9] Li Ji-Gen, Yan Jun, Zou Bo-Xia, Su Wen-Jie. A sine-Gordon soliton star model with the action of exotic matter and dark energy. Acta Physica Sinica, 2011, 60(5): 050301. doi: 10.7498/aps.60.050301
    [10] Zhang Lin, Zhang Chun-Min, Jian Xiao-Hua. Passive detection of upper atmospheric wind field based on the Lorentzian line shape profile. Acta Physica Sinica, 2010, 59(2): 899-906. doi: 10.7498/aps.59.899
    [11] Zhang Li-Chun, Li Huai-Fan, Zhao Ren. Thermodynamics of the Schwarzchild-de Sitter black hole. Acta Physica Sinica, 2010, 59(12): 8994-8998. doi: 10.7498/aps.59.8994
    [12] Gong Tian-Xi, Wang Yong-Jiu. Corrections to Hawking radiation from the black hole surrounded by quintessence. Acta Physica Sinica, 2010, 59(10): 6842-6846. doi: 10.7498/aps.59.6842
    [13] Zhang Ying, Lei You-Ming, Fang Tong. Symmetry breaking crisis of chaotic attractors. Acta Physica Sinica, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [14] Zhou Guo-Quan. Propagation of a Lorentz beam through an apertured misaligned paraxial optical system. Acta Physica Sinica, 2009, 58(9): 6185-6191. doi: 10.7498/aps.58.6185
    [15] Deng Qiang, Yan Jun. A two-dimensional dark energy star model at finite temperature. Acta Physica Sinica, 2008, 57(7): 3978-3982. doi: 10.7498/aps.57.3978
    [16] Cheng Xing-Hua, Tang Long-Gu, Chen Zhi-Tao, Gong Min, Yu Tong-Jun, Zhang Guo-Yi, Shi Rui-Ying. A genetic algorithm research on Lorentz oscillator model in infrared spectra of GaMnN. Acta Physica Sinica, 2008, 57(9): 5875-5880. doi: 10.7498/aps.57.5875
    [17] Zhou Guo-Quan. Study on the propagation properties of Lorentz beam. Acta Physica Sinica, 2008, 57(6): 3494-3498. doi: 10.7498/aps.57.3494
    [18] Wu Ya-Bo, Lü Jian-Bo, Li Song, Yang Xiu-Yi. The evolution of the reconstructing five-dimensional cosmological model with a big bounce. Acta Physica Sinica, 2008, 57(4): 2621-2626. doi: 10.7498/aps.57.2621
    [19] ZHAO BAO-HENG. PHOTON-PHOTON SCATTERING IN SPONTANEOUSLY BROKEN GAUGE THEORIES. Acta Physica Sinica, 1976, 25(1): 53-57. doi: 10.7498/aps.25.53
    [20] 膨胀宇宙新论. Acta Physica Sinica, 1935, 1(3): 1-17. doi: 10.7498/aps.1.1-2
Metrics
  • Abstract views:  5951
  • PDF Downloads:  41
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2019
  • Accepted Date:  25 April 2019
  • Available Online:  01 July 2019
  • Published Online:  05 July 2019

/

返回文章
返回