Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrafast multiexciton Auger recombination of CdSeS

Qin Chao-Chao Cui Ming-Huan Song Di-Di He Wei

Citation:

Ultrafast multiexciton Auger recombination of CdSeS

Qin Chao-Chao, Cui Ming-Huan, Song Di-Di, He Wei
PDF
HTML
Get Citation
  • Multiexciton generation is a process where multiple excitons are generated by absorbing single photons. Efficient multiexciton generation in quantum dots may be a revolutionary discovery, because it provides a new method to improve the solar-to-electric power conversion efficiency in quantum dots-based solar cells and to design novel quantum dots-based multielectron or hole photocatalysts. However, the mechanism of ultrafast multiexciton generation and recombination remain unclear. In this paper, alloy-structured quantum dots, CdSeS, are prepared by the hot injection method. The generation and recombination mechanism of charge carriers in quantum dots samples are discussed in detail. The bivalent band structure of alloy-structured quantum dots is determined by ultraviolet-visible absorption spectra. It is found that the 1S3/2(h)-1S(e) (or 1S), 2S3/2(h)-1S(e) (or 2S) and 1P3/2(h)-1P(e) (or 1P) exciton absorption bands of these quantum dots are at 510 nm, 468 nm and 430 nm, respectively. Femtosecond transient absorption spectroscopy and nanosecond time-resolved photoluminescence spectroscopy are used to investigate the ultrafast exciton generation and recombination dynamics in the alloy-structured quantum dots. By fitting the transient kinetics of 1S exciton bleach, an average biexciton decay time is obtained to be about 80 ps, which is almost twice the decay time of traditional quantum dots (less than 50 ps). Combined with the recently developed ultrafast interface charge separation technology that can extract multiple excitons before their annihilation, it will have a promising application prospect. Moreover, there is a hole relaxation on a the time scale of 5-6 ps via a phonon coupling pathway to lower-energy hole states in addition to the above-described ultrafast exciton-exciton annihilation process in 2S and 1P excitons. Furthermore, by nanosecond time-resolved photoluminescence spectroscopy, it can be concluded that the charge separated state is long-lived (200 ns). Our findings provide a valuable insight into the understanding of ultrafast multiexciton generation and recombination in quantum dots. These results are helpful to understand the intrinsic photo-physics of multiexciton generation in quantum dots, to implement the photovoltaic and optoelectronic applications, and to ascertain the exciton relaxation dynamics of quantum dots.
      Corresponding author: Qin Chao-Chao, qinch@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1404112, 11804084), the Advanced Technology Research Program of Henan Province, China (Grant Nos. 182102210369), and the Foundation for Key Program of Education Department of Henan Province, China (Grant No. 19A140011).
    [1]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [2]

    Werner J H, Kolodinski S, Queisser H J 1994 Phys. Rev. Lett. 72 3851Google Scholar

    [3]

    Beard M C, Luther J M, Nozik A J 2014 Nat. Nanotechnol. 9 951Google Scholar

    [4]

    ten Cate S, Sandeep C S S, Liu Y, Law M, Kinge S, Houtepen A J, Schins J M, Siebbeles L D A 2015 Acc. Chem. Res. 48 174Google Scholar

    [5]

    Tahara H, Sakamoto M, Teranishi T, Kanemitsu Y 2017 Phys. Rev. Lett. 119 247401Google Scholar

    [6]

    Tahara H, Sakamoto M, Teranishi T, Kanemitsu Y 2018 Nat. Commun. 9 3179Google Scholar

    [7]

    Damtie F A, Karki K J, Pullerits T, Wacker A 2016 J. Chem. Phys. 145 064703Google Scholar

    [8]

    Park Y S, Guo S J, Makarov N S, Klimov V I 2015 ACS Nano 9 10386Google Scholar

    [9]

    Hu F R, Yin C Y, Zhang H C, Sun C, Yu W W, Zhang C F, Wang X Y, Zhang Y, Xiao M 2016 Nano Lett. 16 6425Google Scholar

    [10]

    Hu F R, Zhang H C, Sun C, Yin C Y, Lü B H, Zhang C F, Yu W W, Wang X Y, Zhang Y, Xiao M 2015 ACS Nano 9 12410Google Scholar

    [11]

    Zhao G, Cai Q B, Liu X T, Li P W, Zhang Y Q, Shao G S, Liang C 2019 IEEE J. Photovolt. 9 194Google Scholar

    [12]

    Chen Z H, Zhang Z L, Yang J F, Chen W J, Teh Z L, Wang D, Yuan L, Zhang J B, Stride J A, Conibeer G J, Patterson R J, Huang S J 2018 J. Mater. Chem. C 6 9861Google Scholar

    [13]

    Lin Q L, Yun H J, Liu W Y, Song H J, Makarov N S, Isaienko O, Nakotte T, Chen G, Luo H M, Klimov V I, Pietryga J M 2017 J. Am. Chem. Soc. 139 6644Google Scholar

    [14]

    Zhang Z L, Chen Z H, Yuan L, Chen W J, Yang J F, Wang B, Wen X M, Zhang J B, Hu L, Stride J A, Conibeer G J, Patterson R J, Huang S J 2017 Adv. Mater. 29 1703214Google Scholar

    [15]

    Li Q Y, Xu Z H, McBride J R, Lian T Q 2017 ACS Nano 11 2545Google Scholar

    [16]

    Debnath T, Maity P, Maiti S, Ghosh H N 2014 J. Phys. Chem. Lett. 5 2836Google Scholar

    [17]

    Spencer A P, Peters W K, Neale N R, Jonas D M 2019 J. Phys. Chem. C 123 848Google Scholar

    [18]

    Al-Ghamdi M S, Sayari A, Sfaxi L 2016 J. Alloys Compd. 685 202Google Scholar

    [19]

    Kwak G Y, Kim T G, Hong S, Kim A, Ha M H, Kim K J 2018 Sol. Energy 164 89Google Scholar

    [20]

    Zhang P F, Feng Y, Wen X M, Cao W K, Anthony R, Kortshagen U, Conibeer G, Huang S J 2016 Sol. Energ. Mat. Sol. C 145 391Google Scholar

    [21]

    Kryjevski A, Mihaylov D, Kilina S, Kilin D 2017 J. Chem. Phys. 147 154106Google Scholar

    [22]

    Amori A R, Hou Z T, Krauss T D 2018 Annu. Rev. Phys. Chem. 69 81Google Scholar

    [23]

    Schaller R D, Sykora M, Pietryga J M, Klimov V I 2006 Nano Lett. 6 424Google Scholar

    [24]

    Ghimire S, Biju V 2018 J. Photoch. Photobio. C 34 137Google Scholar

    [25]

    Zhu H, Lian T 2012 J. Am. Chem. Soc. 134 11289Google Scholar

    [26]

    Shi X F, Xia X Y, Cui G W, Deng N, Zhao Y Q, Zhuo L H, Tang B 2015 Appl. Catal. B. Environ. 163 123Google Scholar

    [27]

    Schaller R D, Agranovich V M, Klimov V I 2005 Nat. Phys. 1 189

    [28]

    Gordi M, Moravvej-Farshi M K, Ramezani H 2018 Chemphyschem 19 2782Google Scholar

    [29]

    Jier H, Zhuangqun H, Ye Y, Haiming Z, Tianquan L 2010 J. Am. Chem. Soc. 132 4858Google Scholar

    [30]

    Pijpers J J H, Milder M T W, Delerue C, Bonn M 2010 J. Phys. Chem. C 114 6318Google Scholar

    [31]

    Yang Y, Lian T Q 2014 Coordin. Chem. Rev. 263 229

    [32]

    Ghosh H N, Singhal P, Maity P, Jha S K 2017 Chemistry 23 10590Google Scholar

    [33]

    Kroupa D M, Pach G F, Voros M, Giberti F, Chernomordik B D, Crisp R W, Nozik A J, Johnson J C, Singh R, Klimov V I, Galli G, Beard M C 2018 ACS Nano 12 10084Google Scholar

    [34]

    Harris R D, Homan S B, Kodaimati M, He C, Nepomnyashchii A B, Swenson N K, Lian S C, Calzada R, Weiss E A 2016 Chem. Rev. 116 12865Google Scholar

    [35]

    Klimov V I 2007 Annu. Rev. Phys. Chem. 58 635Google Scholar

    [36]

    韩元春, 包特木耳巴根 2015 物理学报 64 113021

    Han Y C, Bao T 2015 Acta Phys. Sin. 64 113021

    [37]

    Liu C, Peterson J J, Krauss T D 2014 J. Phys. Chem. Lett. 5 3032Google Scholar

  • 图 1  样品的稳态吸收光谱(实线)和稳态荧光光谱(虚线), 其中插图部分为样品的能带跃迁示意图

    Figure 1.  Steady-state absorption (solid-line) and fluorescence (dash-line) spectrum of QDs sample. Inset: energy level diagram illustrating the relevant energy of electron/hole states and allowed optical transitions (diagram not drawn to scale).

    图 2  365 nm不同光强激发下的飞秒时间分辨瞬态吸收光谱 (a) 激发脉冲能量为8 nJ的瞬态吸收光谱彩图; (b) 激发脉冲能量为50 nJ的瞬态吸收光谱彩图; (c) 激发脉冲能量为8 nJ的演变相关差分光谱; (d) 激发脉冲能量为50 nJ的演变相关差分光谱

    Figure 2.  Femtosecond time-resolved transient absorption (TA) spectra at 365 nm excitation with different intensities: (a) TA color map with excitation pulse energy of 8 nJ; (b) TA color map with excitation pulse energy of 50 nJ; (c) evolution-associated difference spectrum (EADS) with excitation pulse energy of 8 nJ; (d) EADS with excitation pulse energy of 50 nJ.

    图 3  365 nm不同光强激发下的飞秒时间分辨瞬态吸收光谱 (a) 激发脉冲能量为100 nJ的瞬态吸收光谱彩图; (b)激发脉冲能量为500 nJ的瞬态吸收光谱彩图; (c) 激发脉冲能量为100 nJ的演变相关差分光谱; (d)激发脉冲能量为500 nJ的演变相关差分光谱

    Figure 3.  Femtosecond time-resolved transient absorption (TA) spectra at 365 nm excitation with different intensities: (a) TA color map with excitation pulse energy of 100 nJ; (b) TA color map with excitation pulse energy of 500 nJ; (c) EADS with excitation pulse energy of 100 nJ; (d) EADS with excitation pulse energy of 500 nJ.

    图 4  不同激发能量的瞬态吸收光谱数据在各个激子峰处的漂白动力学曲线 (a) 1P激子漂白峰(430 nm); (b) 2S激子漂白峰(468 nm); (c) 1S激子漂白峰(510 nm). 所有动力学曲线已经归一化至最大振幅

    Figure 4.  The kinetics of TA with different excitation intensities at exciton peaks: (a) 1P exciton bleach recovery (at 430 nm); (b) 2S exciton bleach recovery (at 468 nm); (c) 1S exciton bleach recovery (at 430 nm). All kinetic traces have been normalized to the same maximum amplitude.

    图 5  时间分辨荧光光谱图

    Figure 5.  Time-resolved photoluminescence color map.

    表 1  样品的瞬态吸收数据在510 nm(1S激子)处动力学曲线的拟合参数

    Table 1.  Best-fit parameters of the kinetic curve of the transient absorption data of the QDs at 510 nm (1S exciton).

    激发脉冲能量寿命值
    τet/ps (权重/%)τ1/ps (权重/%)τ2/ns (权重/%)
    8 nJ0.391 (100)$\gg$10 (100)
    50 nJ0.431 (100)82.6 (52.5)$ \gg$10 (47.5)
    100 nJ0.374 (100)82.5 (55.6)$ \gg$10 (44.4)
    500 nJ0.381 (100)80.9 (54)$ \gg$10 (46)
    DownLoad: CSV

    表 2  样品的瞬态吸收数据在468 nm(2S激子)处动力学曲线的拟合参数

    Table 2.  Best-fit parameters of the kinetic curve of the transient absorption data of the QDs at 468 nm (2S exciton).

    激发脉冲能量寿命值
    τet/ps (权重/%)τ1/ps (权重/%)τ2/ps (权重/%)τ3/ns (权重/%)
    8 nJ0.353 (100)$ \gg$10 (100)
    50 nJ0.429 (100)6.0 (67.7)59.1 (8.5)$ \gg$10 (23.8)
    100 nJ0.362 (100)5.5 (32.7)59.8 (43.5)$ \gg$10 (25)
    500 nJ0.340 (100)5.1 (50.1)53.7 (41.3)$ \gg$10 (8.3)
    DownLoad: CSV

    表 3  样品的瞬态吸收数据在430 nm(1P激子)处动力学曲线的拟合参数

    Table 3.  Best-fit parameters of the kinetic curve of the transient absorption data of the QDs at 430 nm (1P exciton).

    激发脉冲能量寿命值
    τet/ps (权重/%)τ1/ps (权重/%)τ2/ps (权重/%)τ3/ns (权重/%)
    8 nJ0.188 (100)$ \gg$10 (100)
    50 nJ0.269 (100)8.2 (27.1)57.0 (22.9)$ \gg$10 (50)
    100 nJ0.213 (100)6.8 (27.2)52.8 (47.7)$ \gg$10 (21.9)
    500 nJ0.207 (100)6.3 (49.5)51.4 (33.3)$ \gg$10 (17.1)
    DownLoad: CSV
  • [1]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [2]

    Werner J H, Kolodinski S, Queisser H J 1994 Phys. Rev. Lett. 72 3851Google Scholar

    [3]

    Beard M C, Luther J M, Nozik A J 2014 Nat. Nanotechnol. 9 951Google Scholar

    [4]

    ten Cate S, Sandeep C S S, Liu Y, Law M, Kinge S, Houtepen A J, Schins J M, Siebbeles L D A 2015 Acc. Chem. Res. 48 174Google Scholar

    [5]

    Tahara H, Sakamoto M, Teranishi T, Kanemitsu Y 2017 Phys. Rev. Lett. 119 247401Google Scholar

    [6]

    Tahara H, Sakamoto M, Teranishi T, Kanemitsu Y 2018 Nat. Commun. 9 3179Google Scholar

    [7]

    Damtie F A, Karki K J, Pullerits T, Wacker A 2016 J. Chem. Phys. 145 064703Google Scholar

    [8]

    Park Y S, Guo S J, Makarov N S, Klimov V I 2015 ACS Nano 9 10386Google Scholar

    [9]

    Hu F R, Yin C Y, Zhang H C, Sun C, Yu W W, Zhang C F, Wang X Y, Zhang Y, Xiao M 2016 Nano Lett. 16 6425Google Scholar

    [10]

    Hu F R, Zhang H C, Sun C, Yin C Y, Lü B H, Zhang C F, Yu W W, Wang X Y, Zhang Y, Xiao M 2015 ACS Nano 9 12410Google Scholar

    [11]

    Zhao G, Cai Q B, Liu X T, Li P W, Zhang Y Q, Shao G S, Liang C 2019 IEEE J. Photovolt. 9 194Google Scholar

    [12]

    Chen Z H, Zhang Z L, Yang J F, Chen W J, Teh Z L, Wang D, Yuan L, Zhang J B, Stride J A, Conibeer G J, Patterson R J, Huang S J 2018 J. Mater. Chem. C 6 9861Google Scholar

    [13]

    Lin Q L, Yun H J, Liu W Y, Song H J, Makarov N S, Isaienko O, Nakotte T, Chen G, Luo H M, Klimov V I, Pietryga J M 2017 J. Am. Chem. Soc. 139 6644Google Scholar

    [14]

    Zhang Z L, Chen Z H, Yuan L, Chen W J, Yang J F, Wang B, Wen X M, Zhang J B, Hu L, Stride J A, Conibeer G J, Patterson R J, Huang S J 2017 Adv. Mater. 29 1703214Google Scholar

    [15]

    Li Q Y, Xu Z H, McBride J R, Lian T Q 2017 ACS Nano 11 2545Google Scholar

    [16]

    Debnath T, Maity P, Maiti S, Ghosh H N 2014 J. Phys. Chem. Lett. 5 2836Google Scholar

    [17]

    Spencer A P, Peters W K, Neale N R, Jonas D M 2019 J. Phys. Chem. C 123 848Google Scholar

    [18]

    Al-Ghamdi M S, Sayari A, Sfaxi L 2016 J. Alloys Compd. 685 202Google Scholar

    [19]

    Kwak G Y, Kim T G, Hong S, Kim A, Ha M H, Kim K J 2018 Sol. Energy 164 89Google Scholar

    [20]

    Zhang P F, Feng Y, Wen X M, Cao W K, Anthony R, Kortshagen U, Conibeer G, Huang S J 2016 Sol. Energ. Mat. Sol. C 145 391Google Scholar

    [21]

    Kryjevski A, Mihaylov D, Kilina S, Kilin D 2017 J. Chem. Phys. 147 154106Google Scholar

    [22]

    Amori A R, Hou Z T, Krauss T D 2018 Annu. Rev. Phys. Chem. 69 81Google Scholar

    [23]

    Schaller R D, Sykora M, Pietryga J M, Klimov V I 2006 Nano Lett. 6 424Google Scholar

    [24]

    Ghimire S, Biju V 2018 J. Photoch. Photobio. C 34 137Google Scholar

    [25]

    Zhu H, Lian T 2012 J. Am. Chem. Soc. 134 11289Google Scholar

    [26]

    Shi X F, Xia X Y, Cui G W, Deng N, Zhao Y Q, Zhuo L H, Tang B 2015 Appl. Catal. B. Environ. 163 123Google Scholar

    [27]

    Schaller R D, Agranovich V M, Klimov V I 2005 Nat. Phys. 1 189

    [28]

    Gordi M, Moravvej-Farshi M K, Ramezani H 2018 Chemphyschem 19 2782Google Scholar

    [29]

    Jier H, Zhuangqun H, Ye Y, Haiming Z, Tianquan L 2010 J. Am. Chem. Soc. 132 4858Google Scholar

    [30]

    Pijpers J J H, Milder M T W, Delerue C, Bonn M 2010 J. Phys. Chem. C 114 6318Google Scholar

    [31]

    Yang Y, Lian T Q 2014 Coordin. Chem. Rev. 263 229

    [32]

    Ghosh H N, Singhal P, Maity P, Jha S K 2017 Chemistry 23 10590Google Scholar

    [33]

    Kroupa D M, Pach G F, Voros M, Giberti F, Chernomordik B D, Crisp R W, Nozik A J, Johnson J C, Singh R, Klimov V I, Galli G, Beard M C 2018 ACS Nano 12 10084Google Scholar

    [34]

    Harris R D, Homan S B, Kodaimati M, He C, Nepomnyashchii A B, Swenson N K, Lian S C, Calzada R, Weiss E A 2016 Chem. Rev. 116 12865Google Scholar

    [35]

    Klimov V I 2007 Annu. Rev. Phys. Chem. 58 635Google Scholar

    [36]

    韩元春, 包特木耳巴根 2015 物理学报 64 113021

    Han Y C, Bao T 2015 Acta Phys. Sin. 64 113021

    [37]

    Liu C, Peterson J J, Krauss T D 2014 J. Phys. Chem. Lett. 5 3032Google Scholar

  • [1] Yunzhe Jia, Sheng Meng. Ultrafast dynamics of water under photoexcitation. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240047
    [2] Fang De-Yin, Fan Xu-Yang, Wei An, Wang Lu-Xia. Coherent excitation energy transfer processes in two-dimensional para-sexiphenyl molecular clusters. Acta Physica Sinica, 2023, 72(19): 197301. doi: 10.7498/aps.72.20230476
    [3] Tao Chen-Yu, Lei Jian-Ting, Yu Xuan, Luo Yan, Ma Xin-Wen, Zhang Shao-Feng. Development of attosecond pulses and their application to ultrafast dynamics of atoms and molecules. Acta Physica Sinica, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [4] Li Bin, Zhang Guo-Feng, Chen Rui-Yun, Qin Cheng-Bing, Hu Jian-Yong, Xiao Lian-Tuan, Jia Suo-Tang. Research progress of single quantum-dot spectroscopy and exciton dynamics. Acta Physica Sinica, 2022, 71(6): 067802. doi: 10.7498/aps.71.20212050
    [5] Fu Xiao-Qian, Lü Si-Yuan, Wang Lu-Xia. Theoretical study of nonlinear multi-exciton dynamics in coupled molecular chains. Acta Physica Sinica, 2020, 69(19): 197301. doi: 10.7498/aps.69.20200104
    [6] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [7] Wang Wen-Jing, Li Chong, Zhang Mao-Mao, Gao Kun. Dynamical study of ultrafast exciton migration in coujugated polymers driven by nonuniform field. Acta Physica Sinica, 2019, 68(17): 177201. doi: 10.7498/aps.68.20190432
    [8] Ye Shu-Ji,  Li Chuan-Zhao,  Zhang Jia-Hui,  Tan Jun-Jun,  Luo Yi. Research progress of molecular structure and dynamics of biological water. Acta Physica Sinica, 2019, 68(1): 013101. doi: 10.7498/aps.68.20181273
    [9] Chen Cong, Liang Pan, Hu Rong-Rong, Jia Tian-Qing, Sun Zhen-Rong, Feng Dong-Hai. Pump-orientation-probe technique and its applications. Acta Physica Sinica, 2018, 67(9): 097201. doi: 10.7498/aps.67.20180244
    [10] Luo Jin-Long, Ling Feng-Zi, Li Shuai, Wang Yan-Mei, Zhang Bing. Ultrafast photodissociation dynamics of butanone in 3s Rydberg state. Acta Physica Sinica, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [11] Han Yuan-Chun, Bao Tmurbagan. Investigation of ultrafast relaxation dynamic process of water-soluble TGA-CdTe quantum dots. Acta Physica Sinica, 2015, 64(11): 113201. doi: 10.7498/aps.64.113201
    [12] Zhu Meng-Long, Dong Yu-Lan, Zhong Hai-Zheng, He Jun. Exciton spin relaxation dynamics in CdTe quantum dots at room temperature. Acta Physica Sinica, 2014, 63(12): 127202. doi: 10.7498/aps.63.127202
    [13] Li Xia, Feng Dong-Hai, Pan Xian-Qun, Jia Tian-Qing, Shan Lu-Fan, Deng Li, Sun Zhen-Rong. Room-temperature ultrafast spin dynamics in colloidal CdSe quantum dots. Acta Physica Sinica, 2012, 61(20): 207202. doi: 10.7498/aps.61.207202
    [14] Li Xia, Feng Dong-Hai, He Hong-Yan, Jia Tian-Qing, Shan Lu-Fan, Sun Zhen-Rong, Xu Zhi-Zhan. Ultrafast carrier dynamics in CdTe/CdS Core/Shell quantum dots. Acta Physica Sinica, 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [15] Li Chun, Yang Fan, Georgios Lefkidis, Wolfgang Hübner. Laser-induced ultrafast spin dynamics research on magnetic nanostructures. Acta Physica Sinica, 2011, 60(1): 017802. doi: 10.7498/aps.60.017802
    [16] Luo Zhi-Hua, Yu Chao-Fan. The kinematic and dynamic nonlinear effects in the exciton-soliton motion in one-dimensional molecular crystals. Acta Physica Sinica, 2008, 57(6): 3720-3729. doi: 10.7498/aps.57.3720
    [17] Liu Cheng-Shi, Ma Ben-Kun, Wang Li-Min. Dynamic behaviours of an exciton confined in coupled quantum dots driven by an a lternating current electrical field. Acta Physica Sinica, 2003, 52(8): 2020-2026. doi: 10.7498/aps.52.2020
    [18] ZHANG XI-QING, WANG YONG-SHENG, XU ZHENG, HOU YAN-BING, WANG ZHEN-JIA, XU XU-RONG, Z.K.TANG, WANG HE-ZHOU, LI WEI-LIANG, ZHAO FU-LI, CAI ZHI-GANG, ZHOU JIAN-YING. EXCITON RECOMBINATION DYNAMICS IN CdTe/CdZnTe QUANTUM WELLS. Acta Physica Sinica, 1999, 48(1): 180-185. doi: 10.7498/aps.48.180
    [19] WANG XU-WEI, SHI SHUANG-HE, CHEN JIN-CHANG, WANG JING-HAN. THE INFLUENCE OF THE ATOMIC SIZE RATIO ON THE STRUCTURE OF THE AMORPHOUS ALLOY TM100-xMx. Acta Physica Sinica, 1989, 38(5): 784-793. doi: 10.7498/aps.38.784
    [20] WANG JING-HAN, CHEN JIN-CHANG, ZHAN WEN-SHAN, ZHAO JIAN-GAO, SHEN BAO-GEN, WANG XU-WEI, LI DE-XIU. THE LOCALIZATION AND CORRELATION EFFECT OF THE POTENTIAL FOR STRUCTURAL MODELLING OF BINARY AMORPHOUS ALLOY. Acta Physica Sinica, 1987, 36(2): 172-182. doi: 10.7498/aps.36.172
Metrics
  • Abstract views:  8925
  • PDF Downloads:  140
  • Cited By: 0
Publishing process
  • Received Date:  04 March 2019
  • Accepted Date:  26 March 2019
  • Available Online:  01 May 2019
  • Published Online:  20 May 2019

/

返回文章
返回